Metamath Proof Explorer


Theorem difsnen

Description: All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015)

Ref Expression
Assertion difsnen ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) )

Proof

Step Hyp Ref Expression
1 difexg ( 𝑋𝑉 → ( 𝑋 ∖ { 𝐴 } ) ∈ V )
2 enrefg ( ( 𝑋 ∖ { 𝐴 } ) ∈ V → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐴 } ) )
3 1 2 syl ( 𝑋𝑉 → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐴 } ) )
4 3 3ad2ant1 ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐴 } ) )
5 sneq ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } )
6 5 difeq2d ( 𝐴 = 𝐵 → ( 𝑋 ∖ { 𝐴 } ) = ( 𝑋 ∖ { 𝐵 } ) )
7 6 breq2d ( 𝐴 = 𝐵 → ( ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐴 } ) ↔ ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) ) )
8 4 7 syl5ibcom ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) → ( 𝐴 = 𝐵 → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) ) )
9 8 imp ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴 = 𝐵 ) → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) )
10 simpl1 ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → 𝑋𝑉 )
11 difexg ( ( 𝑋 ∖ { 𝐴 } ) ∈ V → ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∈ V )
12 enrefg ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∈ V → ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ≈ ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) )
13 10 1 11 12 4syl ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ≈ ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) )
14 dif32 ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) = ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } )
15 13 14 breqtrdi ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ≈ ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) )
16 simpl3 ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → 𝐵𝑋 )
17 simpl2 ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → 𝐴𝑋 )
18 en2sn ( ( 𝐵𝑋𝐴𝑋 ) → { 𝐵 } ≈ { 𝐴 } )
19 16 17 18 syl2anc ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → { 𝐵 } ≈ { 𝐴 } )
20 disjdifr ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∩ { 𝐵 } ) = ∅
21 20 a1i ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∩ { 𝐵 } ) = ∅ )
22 disjdifr ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∩ { 𝐴 } ) = ∅
23 22 a1i ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∩ { 𝐴 } ) = ∅ )
24 unen ( ( ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ≈ ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∧ { 𝐵 } ≈ { 𝐴 } ) ∧ ( ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∩ { 𝐵 } ) = ∅ ∧ ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∩ { 𝐴 } ) = ∅ ) ) → ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∪ { 𝐵 } ) ≈ ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∪ { 𝐴 } ) )
25 15 19 21 23 24 syl22anc ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∪ { 𝐵 } ) ≈ ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∪ { 𝐴 } ) )
26 simpr ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → 𝐴𝐵 )
27 26 necomd ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → 𝐵𝐴 )
28 eldifsn ( 𝐵 ∈ ( 𝑋 ∖ { 𝐴 } ) ↔ ( 𝐵𝑋𝐵𝐴 ) )
29 16 27 28 sylanbrc ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → 𝐵 ∈ ( 𝑋 ∖ { 𝐴 } ) )
30 difsnid ( 𝐵 ∈ ( 𝑋 ∖ { 𝐴 } ) → ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∪ { 𝐵 } ) = ( 𝑋 ∖ { 𝐴 } ) )
31 29 30 syl ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → ( ( ( 𝑋 ∖ { 𝐴 } ) ∖ { 𝐵 } ) ∪ { 𝐵 } ) = ( 𝑋 ∖ { 𝐴 } ) )
32 eldifsn ( 𝐴 ∈ ( 𝑋 ∖ { 𝐵 } ) ↔ ( 𝐴𝑋𝐴𝐵 ) )
33 17 26 32 sylanbrc ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → 𝐴 ∈ ( 𝑋 ∖ { 𝐵 } ) )
34 difsnid ( 𝐴 ∈ ( 𝑋 ∖ { 𝐵 } ) → ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∪ { 𝐴 } ) = ( 𝑋 ∖ { 𝐵 } ) )
35 33 34 syl ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → ( ( ( 𝑋 ∖ { 𝐵 } ) ∖ { 𝐴 } ) ∪ { 𝐴 } ) = ( 𝑋 ∖ { 𝐵 } ) )
36 25 31 35 3brtr3d ( ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) ∧ 𝐴𝐵 ) → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) )
37 9 36 pm2.61dane ( ( 𝑋𝑉𝐴𝑋𝐵𝑋 ) → ( 𝑋 ∖ { 𝐴 } ) ≈ ( 𝑋 ∖ { 𝐵 } ) )