Description: ( B \ { A } ) is a proper subclass of B if and only if A is a member of B . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difsnpss | ⊢ ( 𝐴 ∈ 𝐵 ↔ ( 𝐵 ∖ { 𝐴 } ) ⊊ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb | ⊢ ( 𝐴 ∈ 𝐵 ↔ ¬ ¬ 𝐴 ∈ 𝐵 ) | |
| 2 | difss | ⊢ ( 𝐵 ∖ { 𝐴 } ) ⊆ 𝐵 | |
| 3 | 2 | biantrur | ⊢ ( ( 𝐵 ∖ { 𝐴 } ) ≠ 𝐵 ↔ ( ( 𝐵 ∖ { 𝐴 } ) ⊆ 𝐵 ∧ ( 𝐵 ∖ { 𝐴 } ) ≠ 𝐵 ) ) |
| 4 | difsnb | ⊢ ( ¬ 𝐴 ∈ 𝐵 ↔ ( 𝐵 ∖ { 𝐴 } ) = 𝐵 ) | |
| 5 | 4 | necon3bbii | ⊢ ( ¬ ¬ 𝐴 ∈ 𝐵 ↔ ( 𝐵 ∖ { 𝐴 } ) ≠ 𝐵 ) |
| 6 | df-pss | ⊢ ( ( 𝐵 ∖ { 𝐴 } ) ⊊ 𝐵 ↔ ( ( 𝐵 ∖ { 𝐴 } ) ⊆ 𝐵 ∧ ( 𝐵 ∖ { 𝐴 } ) ≠ 𝐵 ) ) | |
| 7 | 3 5 6 | 3bitr4i | ⊢ ( ¬ ¬ 𝐴 ∈ 𝐵 ↔ ( 𝐵 ∖ { 𝐴 } ) ⊊ 𝐵 ) |
| 8 | 1 7 | bitri | ⊢ ( 𝐴 ∈ 𝐵 ↔ ( 𝐵 ∖ { 𝐴 } ) ⊊ 𝐵 ) |