| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0cn |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ ) |
| 2 |
|
nn0cn |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℂ ) |
| 3 |
1 2
|
anim12i |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 4 |
3
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 5 |
|
subsq |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 8 |
7
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ↔ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) ) |
| 9 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → 𝐶 ∈ ℙ ) |
| 10 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
| 11 |
|
nn0z |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) |
| 12 |
10 11
|
anim12i |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 13 |
|
zaddcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
| 15 |
14
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
| 16 |
|
nn0re |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐵 ∈ ℝ ) |
| 18 |
|
1red |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 1 ∈ ℝ ) |
| 19 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
| 21 |
17 18 20
|
ltaddsub2d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐵 + 1 ) < 𝐴 ↔ 1 < ( 𝐴 − 𝐵 ) ) ) |
| 22 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐵 ∈ ℕ0 ) |
| 23 |
20 22 18
|
3jca |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ ) ) |
| 24 |
|
difgtsumgt |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ ) → ( 1 < ( 𝐴 − 𝐵 ) → 1 < ( 𝐴 + 𝐵 ) ) ) |
| 25 |
23 24
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 1 < ( 𝐴 − 𝐵 ) → 1 < ( 𝐴 + 𝐵 ) ) ) |
| 26 |
21 25
|
sylbid |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐵 + 1 ) < 𝐴 → 1 < ( 𝐴 + 𝐵 ) ) ) |
| 27 |
26
|
3impia |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → 1 < ( 𝐴 + 𝐵 ) ) |
| 28 |
|
eluz2b1 |
⊢ ( ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ 1 < ( 𝐴 + 𝐵 ) ) ) |
| 29 |
15 27 28
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 31 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → 𝐷 ∈ ℕ0 ) |
| 32 |
9 30 31
|
3jca |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∈ ℙ ∧ ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐶 ∈ ℙ ∧ ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) ) |
| 34 |
|
zsubcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
| 35 |
13 34
|
jca |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
| 36 |
12 35
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
| 37 |
36
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
| 38 |
|
dvdsmul1 |
⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 39 |
37 38
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 + 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 40 |
39
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐴 + 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 41 |
|
breq2 |
⊢ ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ↔ ( 𝐴 + 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) ) |
| 42 |
41
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ( 𝐴 + 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ↔ ( 𝐴 + 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) ) |
| 43 |
40 42
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐴 + 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ) |
| 44 |
|
dvdsprmpweqnn |
⊢ ( ( 𝐶 ∈ ℙ ∧ ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) → ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) ) ) |
| 45 |
33 43 44
|
sylc |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) ) |
| 46 |
|
prmz |
⊢ ( 𝐶 ∈ ℙ → 𝐶 ∈ ℤ ) |
| 47 |
|
iddvdsexp |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑚 ∈ ℕ ) → 𝐶 ∥ ( 𝐶 ↑ 𝑚 ) ) |
| 48 |
46 47
|
sylan |
⊢ ( ( 𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ ) → 𝐶 ∥ ( 𝐶 ↑ 𝑚 ) ) |
| 49 |
|
breq2 |
⊢ ( ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → ( 𝐶 ∥ ( 𝐴 + 𝐵 ) ↔ 𝐶 ∥ ( 𝐶 ↑ 𝑚 ) ) ) |
| 50 |
48 49
|
syl5ibrcom |
⊢ ( ( 𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 𝐴 + 𝐵 ) ) ) |
| 51 |
50
|
rexlimdva |
⊢ ( 𝐶 ∈ ℙ → ( ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 𝐴 + 𝐵 ) ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) → ( ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 𝐴 + 𝐵 ) ) ) |
| 53 |
52
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 𝐴 + 𝐵 ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 𝐴 + 𝐵 ) ) ) |
| 55 |
12 34
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
| 56 |
55
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
| 57 |
21
|
biimp3a |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → 1 < ( 𝐴 − 𝐵 ) ) |
| 58 |
|
eluz2b1 |
⊢ ( ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝐴 − 𝐵 ) ∈ ℤ ∧ 1 < ( 𝐴 − 𝐵 ) ) ) |
| 59 |
56 57 58
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 60 |
59
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 61 |
9 60 31
|
3jca |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∈ ℙ ∧ ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) ) |
| 62 |
61
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐶 ∈ ℙ ∧ ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) ) |
| 63 |
|
dvdsmul2 |
⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 64 |
37 63
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 65 |
64
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| 66 |
|
breq2 |
⊢ ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) → ( ( 𝐴 − 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ↔ ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) ) |
| 67 |
66
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ( 𝐴 − 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ↔ ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) ) |
| 68 |
65 67
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐴 − 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ) |
| 69 |
|
dvdsprmpweqnn |
⊢ ( ( 𝐶 ∈ ℙ ∧ ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) → ( ( 𝐴 − 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) → ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) ) ) |
| 70 |
62 68 69
|
sylc |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) ) |
| 71 |
|
iddvdsexp |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑛 ∈ ℕ ) → 𝐶 ∥ ( 𝐶 ↑ 𝑛 ) ) |
| 72 |
46 71
|
sylan |
⊢ ( ( 𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → 𝐶 ∥ ( 𝐶 ↑ 𝑛 ) ) |
| 73 |
|
breq2 |
⊢ ( ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → ( 𝐶 ∥ ( 𝐴 − 𝐵 ) ↔ 𝐶 ∥ ( 𝐶 ↑ 𝑛 ) ) ) |
| 74 |
72 73
|
syl5ibrcom |
⊢ ( ( 𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → 𝐶 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 75 |
74
|
rexlimdva |
⊢ ( 𝐶 ∈ ℙ → ( ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → 𝐶 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 76 |
75
|
adantr |
⊢ ( ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) → ( ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → 𝐶 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 77 |
76
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → 𝐶 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 78 |
77
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → 𝐶 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 79 |
46
|
adantr |
⊢ ( ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) → 𝐶 ∈ ℤ ) |
| 80 |
37 79
|
anim12ci |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∈ ℤ ∧ ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) ) |
| 81 |
|
3anass |
⊢ ( ( 𝐶 ∈ ℤ ∧ ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ↔ ( 𝐶 ∈ ℤ ∧ ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) ) |
| 82 |
80 81
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∈ ℤ ∧ ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
| 83 |
|
dvds2sub |
⊢ ( ( 𝐶 ∈ ℤ ∧ ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( ( 𝐶 ∥ ( 𝐴 + 𝐵 ) ∧ 𝐶 ∥ ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) ) ) |
| 84 |
82 83
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ∥ ( 𝐴 + 𝐵 ) ∧ 𝐶 ∥ ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) ) ) |
| 85 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → 𝐴 ∈ ℂ ) |
| 86 |
2
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → 𝐵 ∈ ℂ ) |
| 87 |
85 86 86
|
pnncand |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) = ( 𝐵 + 𝐵 ) ) |
| 88 |
2
|
2timesd |
⊢ ( 𝐵 ∈ ℕ0 → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
| 89 |
88
|
eqcomd |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 + 𝐵 ) = ( 2 · 𝐵 ) ) |
| 90 |
89
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐵 + 𝐵 ) = ( 2 · 𝐵 ) ) |
| 91 |
87 90
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) = ( 2 · 𝐵 ) ) |
| 92 |
91
|
breq2d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐶 ∥ ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) ↔ 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
| 93 |
92
|
biimpd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐶 ∥ ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
| 94 |
93
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∥ ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
| 95 |
84 94
|
syld |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ∥ ( 𝐴 + 𝐵 ) ∧ 𝐶 ∥ ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
| 96 |
95
|
expcomd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∥ ( 𝐴 − 𝐵 ) → ( 𝐶 ∥ ( 𝐴 + 𝐵 ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) ) |
| 97 |
96
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐶 ∥ ( 𝐴 − 𝐵 ) → ( 𝐶 ∥ ( 𝐴 + 𝐵 ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) ) |
| 98 |
78 97
|
syld |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → ( 𝐶 ∥ ( 𝐴 + 𝐵 ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) ) |
| 99 |
70 98
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐶 ∥ ( 𝐴 + 𝐵 ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
| 100 |
54 99
|
syld |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
| 101 |
45 100
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) |
| 102 |
101
|
ex |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
| 103 |
8 102
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |