Step |
Hyp |
Ref |
Expression |
1 |
|
nn0cn |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ ) |
2 |
|
nn0cn |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℂ ) |
3 |
1 2
|
anim12i |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
5 |
|
subsq |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
8 |
7
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ↔ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) ) |
9 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → 𝐶 ∈ ℙ ) |
10 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
11 |
|
nn0z |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) |
12 |
10 11
|
anim12i |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
13 |
|
zaddcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
16 |
|
nn0re |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) |
17 |
16
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐵 ∈ ℝ ) |
18 |
|
1red |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 1 ∈ ℝ ) |
19 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
21 |
17 18 20
|
ltaddsub2d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐵 + 1 ) < 𝐴 ↔ 1 < ( 𝐴 − 𝐵 ) ) ) |
22 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → 𝐵 ∈ ℕ0 ) |
23 |
20 22 18
|
3jca |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ ) ) |
24 |
|
difgtsumgt |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 1 ∈ ℝ ) → ( 1 < ( 𝐴 − 𝐵 ) → 1 < ( 𝐴 + 𝐵 ) ) ) |
25 |
23 24
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 1 < ( 𝐴 − 𝐵 ) → 1 < ( 𝐴 + 𝐵 ) ) ) |
26 |
21 25
|
sylbid |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐵 + 1 ) < 𝐴 → 1 < ( 𝐴 + 𝐵 ) ) ) |
27 |
26
|
3impia |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → 1 < ( 𝐴 + 𝐵 ) ) |
28 |
|
eluz2b1 |
⊢ ( ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ 1 < ( 𝐴 + 𝐵 ) ) ) |
29 |
15 27 28
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) |
31 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → 𝐷 ∈ ℕ0 ) |
32 |
9 30 31
|
3jca |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∈ ℙ ∧ ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) ) |
33 |
32
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐶 ∈ ℙ ∧ ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) ) |
34 |
|
zsubcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
35 |
13 34
|
jca |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
36 |
12 35
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
37 |
36
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
38 |
|
dvdsmul1 |
⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
39 |
37 38
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 + 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
40 |
39
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐴 + 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
41 |
|
breq2 |
⊢ ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ↔ ( 𝐴 + 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) ) |
42 |
41
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ( 𝐴 + 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ↔ ( 𝐴 + 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) ) |
43 |
40 42
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐴 + 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ) |
44 |
|
dvdsprmpweqnn |
⊢ ( ( 𝐶 ∈ ℙ ∧ ( 𝐴 + 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) → ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) ) ) |
45 |
33 43 44
|
sylc |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) ) |
46 |
|
prmz |
⊢ ( 𝐶 ∈ ℙ → 𝐶 ∈ ℤ ) |
47 |
|
iddvdsexp |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑚 ∈ ℕ ) → 𝐶 ∥ ( 𝐶 ↑ 𝑚 ) ) |
48 |
46 47
|
sylan |
⊢ ( ( 𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ ) → 𝐶 ∥ ( 𝐶 ↑ 𝑚 ) ) |
49 |
|
breq2 |
⊢ ( ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → ( 𝐶 ∥ ( 𝐴 + 𝐵 ) ↔ 𝐶 ∥ ( 𝐶 ↑ 𝑚 ) ) ) |
50 |
48 49
|
syl5ibrcom |
⊢ ( ( 𝐶 ∈ ℙ ∧ 𝑚 ∈ ℕ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 𝐴 + 𝐵 ) ) ) |
51 |
50
|
rexlimdva |
⊢ ( 𝐶 ∈ ℙ → ( ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 𝐴 + 𝐵 ) ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) → ( ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 𝐴 + 𝐵 ) ) ) |
53 |
52
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 𝐴 + 𝐵 ) ) ) |
54 |
53
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 𝐴 + 𝐵 ) ) ) |
55 |
12 34
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
56 |
55
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
57 |
21
|
biimp3a |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → 1 < ( 𝐴 − 𝐵 ) ) |
58 |
|
eluz2b1 |
⊢ ( ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝐴 − 𝐵 ) ∈ ℤ ∧ 1 < ( 𝐴 − 𝐵 ) ) ) |
59 |
56 57 58
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) |
60 |
59
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) |
61 |
9 60 31
|
3jca |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∈ ℙ ∧ ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) ) |
62 |
61
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐶 ∈ ℙ ∧ ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) ) |
63 |
|
dvdsmul2 |
⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
64 |
37 63
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
65 |
64
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
66 |
|
breq2 |
⊢ ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) → ( ( 𝐴 − 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ↔ ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) ) |
67 |
66
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ( 𝐴 − 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ↔ ( 𝐴 − 𝐵 ) ∥ ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) ) |
68 |
65 67
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐴 − 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) ) |
69 |
|
dvdsprmpweqnn |
⊢ ( ( 𝐶 ∈ ℙ ∧ ( 𝐴 − 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐷 ∈ ℕ0 ) → ( ( 𝐴 − 𝐵 ) ∥ ( 𝐶 ↑ 𝐷 ) → ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) ) ) |
70 |
62 68 69
|
sylc |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) ) |
71 |
|
iddvdsexp |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑛 ∈ ℕ ) → 𝐶 ∥ ( 𝐶 ↑ 𝑛 ) ) |
72 |
46 71
|
sylan |
⊢ ( ( 𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → 𝐶 ∥ ( 𝐶 ↑ 𝑛 ) ) |
73 |
|
breq2 |
⊢ ( ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → ( 𝐶 ∥ ( 𝐴 − 𝐵 ) ↔ 𝐶 ∥ ( 𝐶 ↑ 𝑛 ) ) ) |
74 |
72 73
|
syl5ibrcom |
⊢ ( ( 𝐶 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → 𝐶 ∥ ( 𝐴 − 𝐵 ) ) ) |
75 |
74
|
rexlimdva |
⊢ ( 𝐶 ∈ ℙ → ( ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → 𝐶 ∥ ( 𝐴 − 𝐵 ) ) ) |
76 |
75
|
adantr |
⊢ ( ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) → ( ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → 𝐶 ∥ ( 𝐴 − 𝐵 ) ) ) |
77 |
76
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → 𝐶 ∥ ( 𝐴 − 𝐵 ) ) ) |
78 |
77
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → 𝐶 ∥ ( 𝐴 − 𝐵 ) ) ) |
79 |
46
|
adantr |
⊢ ( ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) → 𝐶 ∈ ℤ ) |
80 |
37 79
|
anim12ci |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∈ ℤ ∧ ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) ) |
81 |
|
3anass |
⊢ ( ( 𝐶 ∈ ℤ ∧ ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ↔ ( 𝐶 ∈ ℤ ∧ ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) ) |
82 |
80 81
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∈ ℤ ∧ ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
83 |
|
dvds2sub |
⊢ ( ( 𝐶 ∈ ℤ ∧ ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( ( 𝐶 ∥ ( 𝐴 + 𝐵 ) ∧ 𝐶 ∥ ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) ) ) |
84 |
82 83
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ∥ ( 𝐴 + 𝐵 ) ∧ 𝐶 ∥ ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) ) ) |
85 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → 𝐴 ∈ ℂ ) |
86 |
2
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → 𝐵 ∈ ℂ ) |
87 |
85 86 86
|
pnncand |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) = ( 𝐵 + 𝐵 ) ) |
88 |
2
|
2timesd |
⊢ ( 𝐵 ∈ ℕ0 → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
89 |
88
|
eqcomd |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 + 𝐵 ) = ( 2 · 𝐵 ) ) |
90 |
89
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐵 + 𝐵 ) = ( 2 · 𝐵 ) ) |
91 |
87 90
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) = ( 2 · 𝐵 ) ) |
92 |
91
|
breq2d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐶 ∥ ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) ↔ 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
93 |
92
|
biimpd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) → ( 𝐶 ∥ ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
94 |
93
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∥ ( ( 𝐴 + 𝐵 ) − ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
95 |
84 94
|
syld |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ∥ ( 𝐴 + 𝐵 ) ∧ 𝐶 ∥ ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
96 |
95
|
expcomd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( 𝐶 ∥ ( 𝐴 − 𝐵 ) → ( 𝐶 ∥ ( 𝐴 + 𝐵 ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) ) |
97 |
96
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐶 ∥ ( 𝐴 − 𝐵 ) → ( 𝐶 ∥ ( 𝐴 + 𝐵 ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) ) |
98 |
78 97
|
syld |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ∃ 𝑛 ∈ ℕ ( 𝐴 − 𝐵 ) = ( 𝐶 ↑ 𝑛 ) → ( 𝐶 ∥ ( 𝐴 + 𝐵 ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) ) |
99 |
70 98
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( 𝐶 ∥ ( 𝐴 + 𝐵 ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
100 |
54 99
|
syld |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → ( ∃ 𝑚 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝐶 ↑ 𝑚 ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
101 |
45 100
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) ∧ ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) |
102 |
101
|
ex |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |
103 |
8 102
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ ( 𝐵 + 1 ) < 𝐴 ) ∧ ( 𝐶 ∈ ℙ ∧ 𝐷 ∈ ℕ0 ) ) → ( ( 𝐶 ↑ 𝐷 ) = ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) → 𝐶 ∥ ( 2 · 𝐵 ) ) ) |