Metamath Proof Explorer
Description: If the symmetric difference is contained in C , so is one of the
differences. (Contributed by AV, 17-Aug-2022)
|
|
Ref |
Expression |
|
Hypothesis |
difsymssdifssd.1 |
⊢ ( 𝜑 → ( 𝐴 △ 𝐵 ) ⊆ 𝐶 ) |
|
Assertion |
difsymssdifssd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
difsymssdifssd.1 |
⊢ ( 𝜑 → ( 𝐴 △ 𝐵 ) ⊆ 𝐶 ) |
2 |
|
difsssymdif |
⊢ ( 𝐴 ∖ 𝐵 ) ⊆ ( 𝐴 △ 𝐵 ) |
3 |
2 1
|
sstrid |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ) |