Step |
Hyp |
Ref |
Expression |
1 |
|
inass |
⊢ ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∩ ( V ∖ 𝐶 ) ) = ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) ) |
2 |
|
invdif |
⊢ ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∩ ( V ∖ 𝐶 ) ) = ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∖ 𝐶 ) |
3 |
1 2
|
eqtr3i |
⊢ ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∖ 𝐶 ) |
4 |
|
undm |
⊢ ( V ∖ ( 𝐵 ∪ 𝐶 ) ) = ( ( V ∖ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) |
5 |
4
|
ineq2i |
⊢ ( 𝐴 ∩ ( V ∖ ( 𝐵 ∪ 𝐶 ) ) ) = ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) ) |
6 |
|
invdif |
⊢ ( 𝐴 ∩ ( V ∖ ( 𝐵 ∪ 𝐶 ) ) ) = ( 𝐴 ∖ ( 𝐵 ∪ 𝐶 ) ) |
7 |
5 6
|
eqtr3i |
⊢ ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∖ ( 𝐵 ∪ 𝐶 ) ) |
8 |
3 7
|
eqtr3i |
⊢ ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∖ 𝐶 ) = ( 𝐴 ∖ ( 𝐵 ∪ 𝐶 ) ) |
9 |
|
invdif |
⊢ ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) |
10 |
9
|
difeq1i |
⊢ ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) |
11 |
8 10
|
eqtr3i |
⊢ ( 𝐴 ∖ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) |