Metamath Proof Explorer


Theorem difun1

Description: A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004)

Ref Expression
Assertion difun1 ( 𝐴 ∖ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∖ 𝐶 )

Proof

Step Hyp Ref Expression
1 inass ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∩ ( V ∖ 𝐶 ) ) = ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) )
2 invdif ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∩ ( V ∖ 𝐶 ) ) = ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∖ 𝐶 )
3 1 2 eqtr3i ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∖ 𝐶 )
4 undm ( V ∖ ( 𝐵𝐶 ) ) = ( ( V ∖ 𝐵 ) ∩ ( V ∖ 𝐶 ) )
5 4 ineq2i ( 𝐴 ∩ ( V ∖ ( 𝐵𝐶 ) ) ) = ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) )
6 invdif ( 𝐴 ∩ ( V ∖ ( 𝐵𝐶 ) ) ) = ( 𝐴 ∖ ( 𝐵𝐶 ) )
7 5 6 eqtr3i ( 𝐴 ∩ ( ( V ∖ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∖ ( 𝐵𝐶 ) )
8 3 7 eqtr3i ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∖ 𝐶 ) = ( 𝐴 ∖ ( 𝐵𝐶 ) )
9 invdif ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ( 𝐴𝐵 )
10 9 difeq1i ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∖ 𝐶 ) = ( ( 𝐴𝐵 ) ∖ 𝐶 )
11 8 10 eqtr3i ( 𝐴 ∖ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∖ 𝐶 )