Description: Absorption of union by difference. Theorem 36 of Suppes p. 29. (Contributed by NM, 19-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | difun2 | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐵 ) = ( 𝐴 ∖ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difundir | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐵 ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐵 ) ) | |
2 | difid | ⊢ ( 𝐵 ∖ 𝐵 ) = ∅ | |
3 | 2 | uneq2i | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐵 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ∅ ) |
4 | un0 | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ∅ ) = ( 𝐴 ∖ 𝐵 ) | |
5 | 1 3 4 | 3eqtri | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐵 ) = ( 𝐴 ∖ 𝐵 ) |