Description: Distributive law for class difference. (Contributed by NM, 17-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difundir | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∪ ( 𝐵 ∖ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) = ( ( 𝐴 ∩ ( V ∖ 𝐶 ) ) ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) | |
| 2 | invdif | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐶 ) | |
| 3 | invdif | ⊢ ( 𝐴 ∩ ( V ∖ 𝐶 ) ) = ( 𝐴 ∖ 𝐶 ) | |
| 4 | invdif | ⊢ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) = ( 𝐵 ∖ 𝐶 ) | |
| 5 | 3 4 | uneq12i | ⊢ ( ( 𝐴 ∩ ( V ∖ 𝐶 ) ) ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( ( 𝐴 ∖ 𝐶 ) ∪ ( 𝐵 ∖ 𝐶 ) ) |
| 6 | 1 2 5 | 3eqtr3i | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐴 ∖ 𝐶 ) ∪ ( 𝐵 ∖ 𝐶 ) ) |