Description: Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013) (Revised by Mario Carneiro, 26-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | difxp1 | ⊢ ( ( 𝐴 ∖ 𝐵 ) × 𝐶 ) = ( ( 𝐴 × 𝐶 ) ∖ ( 𝐵 × 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difxp | ⊢ ( ( 𝐴 × 𝐶 ) ∖ ( 𝐵 × 𝐶 ) ) = ( ( ( 𝐴 ∖ 𝐵 ) × 𝐶 ) ∪ ( 𝐴 × ( 𝐶 ∖ 𝐶 ) ) ) | |
2 | difid | ⊢ ( 𝐶 ∖ 𝐶 ) = ∅ | |
3 | 2 | xpeq2i | ⊢ ( 𝐴 × ( 𝐶 ∖ 𝐶 ) ) = ( 𝐴 × ∅ ) |
4 | xp0 | ⊢ ( 𝐴 × ∅ ) = ∅ | |
5 | 3 4 | eqtri | ⊢ ( 𝐴 × ( 𝐶 ∖ 𝐶 ) ) = ∅ |
6 | 5 | uneq2i | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) × 𝐶 ) ∪ ( 𝐴 × ( 𝐶 ∖ 𝐶 ) ) ) = ( ( ( 𝐴 ∖ 𝐵 ) × 𝐶 ) ∪ ∅ ) |
7 | un0 | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) × 𝐶 ) ∪ ∅ ) = ( ( 𝐴 ∖ 𝐵 ) × 𝐶 ) | |
8 | 1 6 7 | 3eqtrri | ⊢ ( ( 𝐴 ∖ 𝐵 ) × 𝐶 ) = ( ( 𝐴 × 𝐶 ) ∖ ( 𝐵 × 𝐶 ) ) |