Step |
Hyp |
Ref |
Expression |
1 |
|
difxp |
⊢ ( ( 𝐴 × 𝐵 ) ∖ ( 𝐴 × 𝐶 ) ) = ( ( ( 𝐴 ∖ 𝐴 ) × 𝐵 ) ∪ ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) ) |
2 |
|
difid |
⊢ ( 𝐴 ∖ 𝐴 ) = ∅ |
3 |
2
|
xpeq1i |
⊢ ( ( 𝐴 ∖ 𝐴 ) × 𝐵 ) = ( ∅ × 𝐵 ) |
4 |
|
0xp |
⊢ ( ∅ × 𝐵 ) = ∅ |
5 |
3 4
|
eqtri |
⊢ ( ( 𝐴 ∖ 𝐴 ) × 𝐵 ) = ∅ |
6 |
5
|
uneq1i |
⊢ ( ( ( 𝐴 ∖ 𝐴 ) × 𝐵 ) ∪ ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) ) = ( ∅ ∪ ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) ) |
7 |
|
uncom |
⊢ ( ∅ ∪ ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) ) = ( ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) ∪ ∅ ) |
8 |
|
un0 |
⊢ ( ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) ∪ ∅ ) = ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) |
9 |
7 8
|
eqtri |
⊢ ( ∅ ∪ ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) ) = ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) |
10 |
1 6 9
|
3eqtrri |
⊢ ( 𝐴 × ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 × 𝐵 ) ∖ ( 𝐴 × 𝐶 ) ) |