| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difxp | ⊢ ( ( 𝐴  ×  𝐵 )  ∖  ( 𝐴  ×  𝐶 ) )  =  ( ( ( 𝐴  ∖  𝐴 )  ×  𝐵 )  ∪  ( 𝐴  ×  ( 𝐵  ∖  𝐶 ) ) ) | 
						
							| 2 |  | difid | ⊢ ( 𝐴  ∖  𝐴 )  =  ∅ | 
						
							| 3 | 2 | xpeq1i | ⊢ ( ( 𝐴  ∖  𝐴 )  ×  𝐵 )  =  ( ∅  ×  𝐵 ) | 
						
							| 4 |  | 0xp | ⊢ ( ∅  ×  𝐵 )  =  ∅ | 
						
							| 5 | 3 4 | eqtri | ⊢ ( ( 𝐴  ∖  𝐴 )  ×  𝐵 )  =  ∅ | 
						
							| 6 | 5 | uneq1i | ⊢ ( ( ( 𝐴  ∖  𝐴 )  ×  𝐵 )  ∪  ( 𝐴  ×  ( 𝐵  ∖  𝐶 ) ) )  =  ( ∅  ∪  ( 𝐴  ×  ( 𝐵  ∖  𝐶 ) ) ) | 
						
							| 7 |  | uncom | ⊢ ( ∅  ∪  ( 𝐴  ×  ( 𝐵  ∖  𝐶 ) ) )  =  ( ( 𝐴  ×  ( 𝐵  ∖  𝐶 ) )  ∪  ∅ ) | 
						
							| 8 |  | un0 | ⊢ ( ( 𝐴  ×  ( 𝐵  ∖  𝐶 ) )  ∪  ∅ )  =  ( 𝐴  ×  ( 𝐵  ∖  𝐶 ) ) | 
						
							| 9 | 7 8 | eqtri | ⊢ ( ∅  ∪  ( 𝐴  ×  ( 𝐵  ∖  𝐶 ) ) )  =  ( 𝐴  ×  ( 𝐵  ∖  𝐶 ) ) | 
						
							| 10 | 1 6 9 | 3eqtrri | ⊢ ( 𝐴  ×  ( 𝐵  ∖  𝐶 ) )  =  ( ( 𝐴  ×  𝐵 )  ∖  ( 𝐴  ×  𝐶 ) ) |