| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihmeetlem14.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihmeetlem14.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dihmeetlem14.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dihmeetlem14.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 5 |
|
dihmeetlem14.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 6 |
|
dihmeetlem14.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 7 |
|
dihmeetlem14.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
dihmeetlem14.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 9 |
|
dihmeetlem14.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 10 |
|
dihmeetlem18.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 11 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 12 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
| 13 |
|
simpr1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) |
| 14 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 15 |
|
simpr33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) |
| 16 |
|
simpr31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝑝 ≤ 𝑋 ) |
| 17 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 18 |
1 2 3 4 5 6 7 8 9 17
|
dihmeetlem17N |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) ∧ ( 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ∧ 𝑝 ≤ 𝑋 ) ) → ( 𝑌 ∧ 𝑝 ) = ( 0. ‘ 𝐾 ) ) |
| 19 |
11 12 13 14 15 16 18
|
syl33anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝑌 ∧ 𝑝 ) = ( 0. ‘ 𝐾 ) ) |
| 20 |
19
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑌 ∧ 𝑝 ) ) = ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ) |
| 21 |
|
simpr2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ) |
| 22 |
|
simpr32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝑟 ≤ 𝑌 ) |
| 23 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝐾 ∈ HL ) |
| 24 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 25 |
23 24
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝐾 ∈ OP ) |
| 26 |
|
simpl1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝑊 ∈ 𝐻 ) |
| 27 |
1 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
| 28 |
26 27
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → 𝑊 ∈ 𝐵 ) |
| 29 |
1 2 17
|
op0le |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑊 ∈ 𝐵 ) → ( 0. ‘ 𝐾 ) ≤ 𝑊 ) |
| 30 |
25 28 29
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 0. ‘ 𝐾 ) ≤ 𝑊 ) |
| 31 |
19 30
|
eqbrtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝑌 ∧ 𝑝 ) ≤ 𝑊 ) |
| 32 |
1 2 3 4 5 6 7 8 9
|
dihmeetlem16N |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) ∧ ( ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑌 ∧ 𝑝 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑌 ∧ 𝑝 ) ) = ( ( 𝐼 ‘ 𝑌 ) ∩ ( 𝐼 ‘ 𝑝 ) ) ) |
| 33 |
11 14 13 21 22 31 32
|
syl33anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝐼 ‘ ( 𝑌 ∧ 𝑝 ) ) = ( ( 𝐼 ‘ 𝑌 ) ∩ ( 𝐼 ‘ 𝑝 ) ) ) |
| 34 |
17 3 9 7 10
|
dih0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) = { 0 } ) |
| 35 |
11 34
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) = { 0 } ) |
| 36 |
20 33 35
|
3eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ ( 𝑝 ≤ 𝑋 ∧ 𝑟 ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) ) ) → ( ( 𝐼 ‘ 𝑌 ) ∩ ( 𝐼 ‘ 𝑝 ) ) = { 0 } ) |