Step |
Hyp |
Ref |
Expression |
1 |
|
dilset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
dilset.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
3 |
|
dilset.w |
⊢ 𝑊 = ( WAtoms ‘ 𝐾 ) |
4 |
|
dilset.m |
⊢ 𝑀 = ( PAut ‘ 𝐾 ) |
5 |
|
dilset.l |
⊢ 𝐿 = ( Dil ‘ 𝐾 ) |
6 |
|
elex |
⊢ ( 𝐾 ∈ 𝐵 → 𝐾 ∈ V ) |
7 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
9 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( PAut ‘ 𝑘 ) = ( PAut ‘ 𝐾 ) ) |
10 |
9 4
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( PAut ‘ 𝑘 ) = 𝑀 ) |
11 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( PSubSp ‘ 𝑘 ) = ( PSubSp ‘ 𝐾 ) ) |
12 |
11 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( PSubSp ‘ 𝑘 ) = 𝑆 ) |
13 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( WAtoms ‘ 𝑘 ) = ( WAtoms ‘ 𝐾 ) ) |
14 |
13 3
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( WAtoms ‘ 𝑘 ) = 𝑊 ) |
15 |
14
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) = ( 𝑊 ‘ 𝑑 ) ) |
16 |
15
|
sseq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) ↔ 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) ) ) |
17 |
16
|
imbi1d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ↔ ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ) ) |
18 |
12 17
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ) ) |
19 |
10 18
|
rabeqbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑓 ∈ ( PAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } = { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) |
20 |
8 19
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ { 𝑓 ∈ ( PAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) = ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ) |
21 |
|
df-dilN |
⊢ Dil = ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ { 𝑓 ∈ ( PAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ) |
22 |
20 21 1
|
mptfvmpt |
⊢ ( 𝐾 ∈ V → ( Dil ‘ 𝐾 ) = ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ) |
23 |
5 22
|
eqtrid |
⊢ ( 𝐾 ∈ V → 𝐿 = ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ) |
24 |
6 23
|
syl |
⊢ ( 𝐾 ∈ 𝐵 → 𝐿 = ( 𝑑 ∈ 𝐴 ↦ { 𝑓 ∈ 𝑀 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑥 ⊆ ( 𝑊 ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ) |