Metamath Proof Explorer


Theorem dilsetN

Description: The set of dilations for a fiducial atom D . (Contributed by NM, 4-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses dilset.a 𝐴 = ( Atoms ‘ 𝐾 )
dilset.s 𝑆 = ( PSubSp ‘ 𝐾 )
dilset.w 𝑊 = ( WAtoms ‘ 𝐾 )
dilset.m 𝑀 = ( PAut ‘ 𝐾 )
dilset.l 𝐿 = ( Dil ‘ 𝐾 )
Assertion dilsetN ( ( 𝐾𝐵𝐷𝐴 ) → ( 𝐿𝐷 ) = { 𝑓𝑀 ∣ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝑓𝑥 ) = 𝑥 ) } )

Proof

Step Hyp Ref Expression
1 dilset.a 𝐴 = ( Atoms ‘ 𝐾 )
2 dilset.s 𝑆 = ( PSubSp ‘ 𝐾 )
3 dilset.w 𝑊 = ( WAtoms ‘ 𝐾 )
4 dilset.m 𝑀 = ( PAut ‘ 𝐾 )
5 dilset.l 𝐿 = ( Dil ‘ 𝐾 )
6 1 2 3 4 5 dilfsetN ( 𝐾𝐵𝐿 = ( 𝑑𝐴 ↦ { 𝑓𝑀 ∣ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝑑 ) → ( 𝑓𝑥 ) = 𝑥 ) } ) )
7 6 fveq1d ( 𝐾𝐵 → ( 𝐿𝐷 ) = ( ( 𝑑𝐴 ↦ { 𝑓𝑀 ∣ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝑑 ) → ( 𝑓𝑥 ) = 𝑥 ) } ) ‘ 𝐷 ) )
8 fveq2 ( 𝑑 = 𝐷 → ( 𝑊𝑑 ) = ( 𝑊𝐷 ) )
9 8 sseq2d ( 𝑑 = 𝐷 → ( 𝑥 ⊆ ( 𝑊𝑑 ) ↔ 𝑥 ⊆ ( 𝑊𝐷 ) ) )
10 9 imbi1d ( 𝑑 = 𝐷 → ( ( 𝑥 ⊆ ( 𝑊𝑑 ) → ( 𝑓𝑥 ) = 𝑥 ) ↔ ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝑓𝑥 ) = 𝑥 ) ) )
11 10 ralbidv ( 𝑑 = 𝐷 → ( ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝑑 ) → ( 𝑓𝑥 ) = 𝑥 ) ↔ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝑓𝑥 ) = 𝑥 ) ) )
12 11 rabbidv ( 𝑑 = 𝐷 → { 𝑓𝑀 ∣ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝑑 ) → ( 𝑓𝑥 ) = 𝑥 ) } = { 𝑓𝑀 ∣ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝑓𝑥 ) = 𝑥 ) } )
13 eqid ( 𝑑𝐴 ↦ { 𝑓𝑀 ∣ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝑑 ) → ( 𝑓𝑥 ) = 𝑥 ) } ) = ( 𝑑𝐴 ↦ { 𝑓𝑀 ∣ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝑑 ) → ( 𝑓𝑥 ) = 𝑥 ) } )
14 4 fvexi 𝑀 ∈ V
15 14 rabex { 𝑓𝑀 ∣ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝑓𝑥 ) = 𝑥 ) } ∈ V
16 12 13 15 fvmpt ( 𝐷𝐴 → ( ( 𝑑𝐴 ↦ { 𝑓𝑀 ∣ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝑑 ) → ( 𝑓𝑥 ) = 𝑥 ) } ) ‘ 𝐷 ) = { 𝑓𝑀 ∣ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝑓𝑥 ) = 𝑥 ) } )
17 7 16 sylan9eq ( ( 𝐾𝐵𝐷𝐴 ) → ( 𝐿𝐷 ) = { 𝑓𝑀 ∣ ∀ 𝑥𝑆 ( 𝑥 ⊆ ( 𝑊𝐷 ) → ( 𝑓𝑥 ) = 𝑥 ) } )