Metamath Proof Explorer


Theorem dimkerim

Description: Given a linear map F between vector spaces V and U , the dimension of the vector space V is the sum of the dimension of F 's kernel and the dimension of F 's image. Second part of theorem 5.3 in Lang p. 141 This can also be described as the Rank-nullity theorem, ( dimI ) being the rank of F (the dimension of its image), and ( dimK ) its nullity (the dimension of its kernel). (Contributed by Thierry Arnoux, 17-May-2023)

Ref Expression
Hypotheses dimkerim.0 0 = ( 0g𝑈 )
dimkerim.k 𝐾 = ( 𝑉s ( 𝐹 “ { 0 } ) )
dimkerim.i 𝐼 = ( 𝑈s ran 𝐹 )
Assertion dimkerim ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → ( dim ‘ 𝑉 ) = ( ( dim ‘ 𝐾 ) +𝑒 ( dim ‘ 𝐼 ) ) )

Proof

Step Hyp Ref Expression
1 dimkerim.0 0 = ( 0g𝑈 )
2 dimkerim.k 𝐾 = ( 𝑉s ( 𝐹 “ { 0 } ) )
3 dimkerim.i 𝐼 = ( 𝑈s ran 𝐹 )
4 1 2 kerlmhm ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝐾 ∈ LVec )
5 eqid ( LBasis ‘ 𝐾 ) = ( LBasis ‘ 𝐾 )
6 5 lbsex ( 𝐾 ∈ LVec → ( LBasis ‘ 𝐾 ) ≠ ∅ )
7 4 6 syl ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → ( LBasis ‘ 𝐾 ) ≠ ∅ )
8 n0 ( ( LBasis ‘ 𝐾 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( LBasis ‘ 𝐾 ) )
9 7 8 sylib ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → ∃ 𝑤 𝑤 ∈ ( LBasis ‘ 𝐾 ) )
10 simpllr ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝑤 ∈ ( LBasis ‘ 𝐾 ) )
11 vex 𝑏 ∈ V
12 11 difexi ( 𝑏𝑤 ) ∈ V
13 12 a1i ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝑏𝑤 ) ∈ V )
14 disjdif ( 𝑤 ∩ ( 𝑏𝑤 ) ) = ∅
15 14 a1i ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝑤 ∩ ( 𝑏𝑤 ) ) = ∅ )
16 hashunx ( ( 𝑤 ∈ ( LBasis ‘ 𝐾 ) ∧ ( 𝑏𝑤 ) ∈ V ∧ ( 𝑤 ∩ ( 𝑏𝑤 ) ) = ∅ ) → ( ♯ ‘ ( 𝑤 ∪ ( 𝑏𝑤 ) ) ) = ( ( ♯ ‘ 𝑤 ) +𝑒 ( ♯ ‘ ( 𝑏𝑤 ) ) ) )
17 10 13 15 16 syl3anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ♯ ‘ ( 𝑤 ∪ ( 𝑏𝑤 ) ) ) = ( ( ♯ ‘ 𝑤 ) +𝑒 ( ♯ ‘ ( 𝑏𝑤 ) ) ) )
18 simp-4l ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝑉 ∈ LVec )
19 simpr ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝑤𝑏 )
20 undif ( 𝑤𝑏 ↔ ( 𝑤 ∪ ( 𝑏𝑤 ) ) = 𝑏 )
21 19 20 sylib ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝑤 ∪ ( 𝑏𝑤 ) ) = 𝑏 )
22 simplr ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝑏 ∈ ( LBasis ‘ 𝑉 ) )
23 21 22 eqeltrd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝑤 ∪ ( 𝑏𝑤 ) ) ∈ ( LBasis ‘ 𝑉 ) )
24 eqid ( LBasis ‘ 𝑉 ) = ( LBasis ‘ 𝑉 )
25 24 dimval ( ( 𝑉 ∈ LVec ∧ ( 𝑤 ∪ ( 𝑏𝑤 ) ) ∈ ( LBasis ‘ 𝑉 ) ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ ( 𝑤 ∪ ( 𝑏𝑤 ) ) ) )
26 18 23 25 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ ( 𝑤 ∪ ( 𝑏𝑤 ) ) ) )
27 4 ad3antrrr ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝐾 ∈ LVec )
28 5 dimval ( ( 𝐾 ∈ LVec ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝐾 ) = ( ♯ ‘ 𝑤 ) )
29 27 10 28 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( dim ‘ 𝐾 ) = ( ♯ ‘ 𝑤 ) )
30 3 imlmhm ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝐼 ∈ LVec )
31 30 ad3antrrr ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝐼 ∈ LVec )
32 simp-4r ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) )
33 lmhmlmod2 ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → 𝑈 ∈ LMod )
34 32 33 syl ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝑈 ∈ LMod )
35 lmhmrnlss ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) )
36 32 35 syl ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) )
37 df-ima ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) = ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) )
38 imassrn ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ⊆ ran 𝐹
39 38 a1i ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ⊆ ran 𝐹 )
40 37 39 eqsstrrid ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ⊆ ran 𝐹 )
41 lveclmod ( 𝑉 ∈ LVec → 𝑉 ∈ LMod )
42 41 ad4antr ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝑉 ∈ LMod )
43 24 lbslinds ( LBasis ‘ 𝑉 ) ⊆ ( LIndS ‘ 𝑉 )
44 43 22 sselid ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝑏 ∈ ( LIndS ‘ 𝑉 ) )
45 difssd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝑏𝑤 ) ⊆ 𝑏 )
46 lindsss ( ( 𝑉 ∈ LMod ∧ 𝑏 ∈ ( LIndS ‘ 𝑉 ) ∧ ( 𝑏𝑤 ) ⊆ 𝑏 ) → ( 𝑏𝑤 ) ∈ ( LIndS ‘ 𝑉 ) )
47 42 44 45 46 syl3anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝑏𝑤 ) ∈ ( LIndS ‘ 𝑉 ) )
48 eqid ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 )
49 48 linds1 ( ( 𝑏𝑤 ) ∈ ( LIndS ‘ 𝑉 ) → ( 𝑏𝑤 ) ⊆ ( Base ‘ 𝑉 ) )
50 47 49 syl ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝑏𝑤 ) ⊆ ( Base ‘ 𝑉 ) )
51 eqid ( LSubSp ‘ 𝑉 ) = ( LSubSp ‘ 𝑉 )
52 eqid ( LSpan ‘ 𝑉 ) = ( LSpan ‘ 𝑉 )
53 48 51 52 lspcl ( ( 𝑉 ∈ LMod ∧ ( 𝑏𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) )
54 42 50 53 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) )
55 eqid ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) = ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) )
56 51 55 reslmhm ( ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∈ ( ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) LMHom 𝑈 ) )
57 32 54 56 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∈ ( ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) LMHom 𝑈 ) )
58 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
59 3 58 reslmhm2b ( ( 𝑈 ∈ LMod ∧ ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) ∧ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ⊆ ran 𝐹 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∈ ( ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) LMHom 𝑈 ) ↔ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∈ ( ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) LMHom 𝐼 ) ) )
60 59 biimpa ( ( ( 𝑈 ∈ LMod ∧ ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) ∧ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ⊆ ran 𝐹 ) ∧ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∈ ( ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) LMHom 𝑈 ) ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∈ ( ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) LMHom 𝐼 ) )
61 34 36 40 57 60 syl31anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∈ ( ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) LMHom 𝐼 ) )
62 lmghm ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) )
63 62 ad4antlr ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) )
64 48 24 lbsss ( 𝑏 ∈ ( LBasis ‘ 𝑉 ) → 𝑏 ⊆ ( Base ‘ 𝑉 ) )
65 22 64 syl ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝑏 ⊆ ( Base ‘ 𝑉 ) )
66 45 65 sstrd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝑏𝑤 ) ⊆ ( Base ‘ 𝑉 ) )
67 42 66 53 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) )
68 51 lsssubg ( ( 𝑉 ∈ LMod ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∈ ( SubGrp ‘ 𝑉 ) )
69 42 67 68 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∈ ( SubGrp ‘ 𝑉 ) )
70 55 resghm ( ( 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∈ ( SubGrp ‘ 𝑉 ) ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∈ ( ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) GrpHom 𝑈 ) )
71 63 69 70 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∈ ( ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) GrpHom 𝑈 ) )
72 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
73 48 72 lmhmf ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑈 ) )
74 73 ad4antlr ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑈 ) )
75 74 ffnd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝐹 Fn ( Base ‘ 𝑉 ) )
76 48 52 lspssv ( ( 𝑉 ∈ LMod ∧ ( 𝑏𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) )
77 42 66 76 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) )
78 75 77 fnssresd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) Fn ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) )
79 fniniseg ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) Fn ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) → ( 𝑥 ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) ↔ ( 𝑥 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ‘ 𝑥 ) = 0 ) ) )
80 79 biimpa ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) Fn ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) ) → ( 𝑥 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ‘ 𝑥 ) = 0 ) )
81 78 80 sylan ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) ) → ( 𝑥 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ‘ 𝑥 ) = 0 ) )
82 81 simpld ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) ) → 𝑥 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) )
83 75 adantr ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) ) → 𝐹 Fn ( Base ‘ 𝑉 ) )
84 77 adantr ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) )
85 84 82 sseldd ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) ) → 𝑥 ∈ ( Base ‘ 𝑉 ) )
86 82 fvresd ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
87 81 simprd ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ‘ 𝑥 ) = 0 )
88 86 87 eqtr3d ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) ) → ( 𝐹𝑥 ) = 0 )
89 fniniseg ( 𝐹 Fn ( Base ‘ 𝑉 ) → ( 𝑥 ∈ ( 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝐹𝑥 ) = 0 ) ) )
90 89 biimpar ( ( 𝐹 Fn ( Base ‘ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝐹𝑥 ) = 0 ) ) → 𝑥 ∈ ( 𝐹 “ { 0 } ) )
91 83 85 88 90 syl12anc ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) ) → 𝑥 ∈ ( 𝐹 “ { 0 } ) )
92 82 91 elind ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) ) → 𝑥 ∈ ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∩ ( 𝐹 “ { 0 } ) ) )
93 simpr ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑤 ∈ ( LBasis ‘ 𝐾 ) )
94 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
95 eqid ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐾 )
96 94 5 95 lbssp ( 𝑤 ∈ ( LBasis ‘ 𝐾 ) → ( ( LSpan ‘ 𝐾 ) ‘ 𝑤 ) = ( Base ‘ 𝐾 ) )
97 93 96 syl ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( ( LSpan ‘ 𝐾 ) ‘ 𝑤 ) = ( Base ‘ 𝐾 ) )
98 41 ad2antrr ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑉 ∈ LMod )
99 eqid ( 𝐹 “ { 0 } ) = ( 𝐹 “ { 0 } )
100 99 1 51 lmhmkerlss ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ( 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) )
101 100 ad2antlr ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) )
102 94 5 lbsss ( 𝑤 ∈ ( LBasis ‘ 𝐾 ) → 𝑤 ⊆ ( Base ‘ 𝐾 ) )
103 93 102 syl ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑤 ⊆ ( Base ‘ 𝐾 ) )
104 cnvimass ( 𝐹 “ { 0 } ) ⊆ dom 𝐹
105 104 73 fssdm ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ( 𝐹 “ { 0 } ) ⊆ ( Base ‘ 𝑉 ) )
106 2 48 ressbas2 ( ( 𝐹 “ { 0 } ) ⊆ ( Base ‘ 𝑉 ) → ( 𝐹 “ { 0 } ) = ( Base ‘ 𝐾 ) )
107 105 106 syl ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ( 𝐹 “ { 0 } ) = ( Base ‘ 𝐾 ) )
108 107 ad2antlr ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( 𝐹 “ { 0 } ) = ( Base ‘ 𝐾 ) )
109 103 108 sseqtrrd ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑤 ⊆ ( 𝐹 “ { 0 } ) )
110 2 52 95 51 lsslsp ( ( 𝑉 ∈ LMod ∧ ( 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ∧ 𝑤 ⊆ ( 𝐹 “ { 0 } ) ) → ( ( LSpan ‘ 𝐾 ) ‘ 𝑤 ) = ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) )
111 110 eqcomd ( ( 𝑉 ∈ LMod ∧ ( 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ∧ 𝑤 ⊆ ( 𝐹 “ { 0 } ) ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) = ( ( LSpan ‘ 𝐾 ) ‘ 𝑤 ) )
112 98 101 109 111 syl3anc ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) = ( ( LSpan ‘ 𝐾 ) ‘ 𝑤 ) )
113 97 112 108 3eqtr4d ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) = ( 𝐹 “ { 0 } ) )
114 113 ad2antrr ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) = ( 𝐹 “ { 0 } ) )
115 114 ineq2d ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∩ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) = ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∩ ( 𝐹 “ { 0 } ) ) )
116 eqid ( 0g𝑉 ) = ( 0g𝑉 )
117 24 52 116 lbsdiflsp0 ( ( 𝑉 ∈ LVec ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ∧ 𝑤𝑏 ) → ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∩ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) = { ( 0g𝑉 ) } )
118 117 ad5ant145 ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∩ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) = { ( 0g𝑉 ) } )
119 115 118 eqtr3d ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∩ ( 𝐹 “ { 0 } ) ) = { ( 0g𝑉 ) } )
120 119 adantr ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) ) → ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∩ ( 𝐹 “ { 0 } ) ) = { ( 0g𝑉 ) } )
121 92 120 eleqtrd ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) ) → 𝑥 ∈ { ( 0g𝑉 ) } )
122 121 ex ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝑥 ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) → 𝑥 ∈ { ( 0g𝑉 ) } ) )
123 122 ssrdv ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) ⊆ { ( 0g𝑉 ) } )
124 116 48 52 0ellsp ( ( 𝑉 ∈ LMod ∧ ( 𝑏𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) → ( 0g𝑉 ) ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) )
125 42 66 124 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 0g𝑉 ) ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) )
126 fvexd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ‘ ( 0g𝑉 ) ) ∈ V )
127 125 fvresd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ‘ ( 0g𝑉 ) ) = ( 𝐹 ‘ ( 0g𝑉 ) ) )
128 116 1 ghmid ( 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) → ( 𝐹 ‘ ( 0g𝑉 ) ) = 0 )
129 62 128 syl ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ( 𝐹 ‘ ( 0g𝑉 ) ) = 0 )
130 129 ad4antlr ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 ‘ ( 0g𝑉 ) ) = 0 )
131 127 130 eqtrd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ‘ ( 0g𝑉 ) ) = 0 )
132 elsng ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ‘ ( 0g𝑉 ) ) ∈ V → ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ‘ ( 0g𝑉 ) ) ∈ { 0 } ↔ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ‘ ( 0g𝑉 ) ) = 0 ) )
133 132 biimpar ( ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ‘ ( 0g𝑉 ) ) ∈ V ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ‘ ( 0g𝑉 ) ) = 0 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ‘ ( 0g𝑉 ) ) ∈ { 0 } )
134 126 131 133 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ‘ ( 0g𝑉 ) ) ∈ { 0 } )
135 78 125 134 elpreimad ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 0g𝑉 ) ∈ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) )
136 135 snssd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → { ( 0g𝑉 ) } ⊆ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) )
137 123 136 eqssd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) = { ( 0g𝑉 ) } )
138 lmodgrp ( 𝑉 ∈ LMod → 𝑉 ∈ Grp )
139 grpmnd ( 𝑉 ∈ Grp → 𝑉 ∈ Mnd )
140 42 138 139 3syl ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝑉 ∈ Mnd )
141 55 48 116 ress0g ( ( 𝑉 ∈ Mnd ∧ ( 0g𝑉 ) ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) → ( 0g𝑉 ) = ( 0g ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) )
142 140 125 77 141 syl3anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 0g𝑉 ) = ( 0g ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) )
143 142 sneqd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → { ( 0g𝑉 ) } = { ( 0g ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) } )
144 137 143 eqtrd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) = { ( 0g ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) } )
145 eqid ( Base ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) = ( Base ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) )
146 eqid ( 0g ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) = ( 0g ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) )
147 145 72 146 1 kerf1ghm ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∈ ( ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) GrpHom 𝑈 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( Base ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) –1-1→ ( Base ‘ 𝑈 ) ↔ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) = { ( 0g ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) } ) )
148 147 biimpar ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∈ ( ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) GrpHom 𝑈 ) ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ { 0 } ) = { ( 0g ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) } ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( Base ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) –1-1→ ( Base ‘ 𝑈 ) )
149 71 144 148 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( Base ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) –1-1→ ( Base ‘ 𝑈 ) )
150 eqidd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) = ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) )
151 55 48 ressbas2 ( ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) = ( Base ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) )
152 77 151 syl ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) = ( Base ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) )
153 eqidd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) )
154 150 152 153 f1eq123d ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) –1-1→ ( Base ‘ 𝑈 ) ↔ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( Base ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) –1-1→ ( Base ‘ 𝑈 ) ) )
155 149 154 mpbird ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) –1-1→ ( Base ‘ 𝑈 ) )
156 f1ssr ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) –1-1→ ( Base ‘ 𝑈 ) ∧ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ⊆ ran 𝐹 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) –1-1→ ran 𝐹 )
157 155 40 156 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) –1-1→ ran 𝐹 )
158 f1f1orn ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) –1-1→ ran 𝐹 → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) –1-1-onto→ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) )
159 157 158 syl ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) –1-1-onto→ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) )
160 simp-4r ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → ( 𝐹𝑥 ) = 𝑦 )
161 75 ad6antr ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → 𝐹 Fn ( Base ‘ 𝑉 ) )
162 simpllr ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) )
163 113 ad8antr ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) = ( 𝐹 “ { 0 } ) )
164 162 163 eleqtrd ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → 𝑢 ∈ ( 𝐹 “ { 0 } ) )
165 fniniseg ( 𝐹 Fn ( Base ‘ 𝑉 ) → ( 𝑢 ∈ ( 𝐹 “ { 0 } ) ↔ ( 𝑢 ∈ ( Base ‘ 𝑉 ) ∧ ( 𝐹𝑢 ) = 0 ) ) )
166 165 simplbda ( ( 𝐹 Fn ( Base ‘ 𝑉 ) ∧ 𝑢 ∈ ( 𝐹 “ { 0 } ) ) → ( 𝐹𝑢 ) = 0 )
167 161 164 166 syl2anc ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → ( 𝐹𝑢 ) = 0 )
168 167 oveq1d ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → ( ( 𝐹𝑢 ) ( +g𝑈 ) ( 𝐹𝑣 ) ) = ( 0 ( +g𝑈 ) ( 𝐹𝑣 ) ) )
169 simpr ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) )
170 169 fveq2d ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → ( 𝐹𝑥 ) = ( 𝐹 ‘ ( 𝑢 ( +g𝑉 ) 𝑣 ) ) )
171 63 ad6antr ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) )
172 48 52 lspss ( ( 𝑉 ∈ LMod ∧ 𝑏 ⊆ ( Base ‘ 𝑉 ) ∧ 𝑤𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ 𝑏 ) )
173 42 65 19 172 syl3anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ 𝑏 ) )
174 48 24 52 lbssp ( 𝑏 ∈ ( LBasis ‘ 𝑉 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑏 ) = ( Base ‘ 𝑉 ) )
175 22 174 syl ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑏 ) = ( Base ‘ 𝑉 ) )
176 173 175 sseqtrd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) )
177 176 ad3antrrr ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) )
178 177 ad3antrrr ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) )
179 178 162 sseldd ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → 𝑢 ∈ ( Base ‘ 𝑉 ) )
180 77 ad3antrrr ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) )
181 180 ad3antrrr ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) )
182 simplr ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) )
183 181 182 sseldd ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → 𝑣 ∈ ( Base ‘ 𝑉 ) )
184 eqid ( +g𝑉 ) = ( +g𝑉 )
185 eqid ( +g𝑈 ) = ( +g𝑈 )
186 48 184 185 ghmlin ( ( 𝐹 ∈ ( 𝑉 GrpHom 𝑈 ) ∧ 𝑢 ∈ ( Base ‘ 𝑉 ) ∧ 𝑣 ∈ ( Base ‘ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑢 ( +g𝑉 ) 𝑣 ) ) = ( ( 𝐹𝑢 ) ( +g𝑈 ) ( 𝐹𝑣 ) ) )
187 171 179 183 186 syl3anc ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → ( 𝐹 ‘ ( 𝑢 ( +g𝑉 ) 𝑣 ) ) = ( ( 𝐹𝑢 ) ( +g𝑈 ) ( 𝐹𝑣 ) ) )
188 170 187 eqtr2d ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → ( ( 𝐹𝑢 ) ( +g𝑈 ) ( 𝐹𝑣 ) ) = ( 𝐹𝑥 ) )
189 lmhmlvec2 ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝑈 ∈ LVec )
190 189 lvecgrpd ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝑈 ∈ Grp )
191 190 ad9antr ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → 𝑈 ∈ Grp )
192 74 ad6antr ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑈 ) )
193 192 183 ffvelcdmd ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → ( 𝐹𝑣 ) ∈ ( Base ‘ 𝑈 ) )
194 72 185 1 191 193 grplidd ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → ( 0 ( +g𝑈 ) ( 𝐹𝑣 ) ) = ( 𝐹𝑣 ) )
195 168 188 194 3eqtr3d ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → ( 𝐹𝑥 ) = ( 𝐹𝑣 ) )
196 160 195 eqtr3d ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → 𝑦 = ( 𝐹𝑣 ) )
197 161 183 182 fnfvimad ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → ( 𝐹𝑣 ) ∈ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) )
198 196 197 eqeltrd ( ( ( ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) ∧ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ) ∧ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) → 𝑦 ∈ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) )
199 simp-7l ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) → 𝑉 ∈ LVec )
200 simplr ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) → 𝑥 ∈ ( Base ‘ 𝑉 ) )
201 109 ad2antrr ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝑤 ⊆ ( 𝐹 “ { 0 } ) )
202 105 ad4antlr ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 “ { 0 } ) ⊆ ( Base ‘ 𝑉 ) )
203 201 202 sstrd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → 𝑤 ⊆ ( Base ‘ 𝑉 ) )
204 eqid ( LSSum ‘ 𝑉 ) = ( LSSum ‘ 𝑉 )
205 48 52 204 lsmsp2 ( ( 𝑉 ∈ LMod ∧ 𝑤 ⊆ ( Base ‘ 𝑉 ) ∧ ( 𝑏𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) → ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) = ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑤 ∪ ( 𝑏𝑤 ) ) ) )
206 42 203 66 205 syl3anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) = ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑤 ∪ ( 𝑏𝑤 ) ) ) )
207 21 fveq2d ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑤 ∪ ( 𝑏𝑤 ) ) ) = ( ( LSpan ‘ 𝑉 ) ‘ 𝑏 ) )
208 206 207 175 3eqtrrd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( Base ‘ 𝑉 ) = ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) )
209 208 ad3antrrr ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) → ( Base ‘ 𝑉 ) = ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) )
210 200 209 eleqtrd ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) → 𝑥 ∈ ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) )
211 48 184 204 lsmelvalx ( ( 𝑉 ∈ LVec ∧ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) → ( 𝑥 ∈ ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ↔ ∃ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ∃ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) ) )
212 211 biimpa ( ( ( 𝑉 ∈ LVec ∧ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ⊆ ( Base ‘ 𝑉 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) ) ∧ 𝑥 ∈ ( ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ( LSSum ‘ 𝑉 ) ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) → ∃ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ∃ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) )
213 199 177 180 210 212 syl31anc ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) → ∃ 𝑢 ∈ ( ( LSpan ‘ 𝑉 ) ‘ 𝑤 ) ∃ 𝑣 ∈ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) 𝑥 = ( 𝑢 ( +g𝑉 ) 𝑣 ) )
214 198 213 r19.29vva ( ( ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( Base ‘ 𝑉 ) ) ∧ ( 𝐹𝑥 ) = 𝑦 ) → 𝑦 ∈ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) )
215 fvelrnb ( 𝐹 Fn ( Base ‘ 𝑉 ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝑉 ) ( 𝐹𝑥 ) = 𝑦 ) )
216 215 biimpa ( ( 𝐹 Fn ( Base ‘ 𝑉 ) ∧ 𝑦 ∈ ran 𝐹 ) → ∃ 𝑥 ∈ ( Base ‘ 𝑉 ) ( 𝐹𝑥 ) = 𝑦 )
217 75 216 sylan ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) → ∃ 𝑥 ∈ ( Base ‘ 𝑉 ) ( 𝐹𝑥 ) = 𝑦 )
218 214 217 r19.29a ( ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) )
219 39 218 eqelssd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 “ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) = ran 𝐹 )
220 37 219 eqtr3id ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) = ran 𝐹 )
221 220 f1oeq3d ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) –1-1-onto→ ran ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ↔ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) –1-1-onto→ ran 𝐹 ) )
222 159 221 mpbid ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) –1-1-onto→ ran 𝐹 )
223 42 50 76 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ⊆ ( Base ‘ 𝑉 ) )
224 223 151 syl ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) = ( Base ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) )
225 frn ( 𝐹 : ( Base ‘ 𝑉 ) ⟶ ( Base ‘ 𝑈 ) → ran 𝐹 ⊆ ( Base ‘ 𝑈 ) )
226 3 72 ressbas2 ( ran 𝐹 ⊆ ( Base ‘ 𝑈 ) → ran 𝐹 = ( Base ‘ 𝐼 ) )
227 73 225 226 3syl ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ran 𝐹 = ( Base ‘ 𝐼 ) )
228 32 227 syl ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ran 𝐹 = ( Base ‘ 𝐼 ) )
229 150 224 228 f1oeq123d ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) –1-1-onto→ ran 𝐹 ↔ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( Base ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) –1-1-onto→ ( Base ‘ 𝐼 ) ) )
230 222 229 mpbid ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( Base ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) –1-1-onto→ ( Base ‘ 𝐼 ) )
231 eqid ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 )
232 145 231 islmim ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∈ ( ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) LMIso 𝐼 ) ↔ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∈ ( ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) LMHom 𝐼 ) ∧ ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( Base ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) –1-1-onto→ ( Base ‘ 𝐼 ) ) )
233 61 230 232 sylanbrc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∈ ( ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) LMIso 𝐼 ) )
234 48 52 lspssid ( ( 𝑉 ∈ LMod ∧ ( 𝑏𝑤 ) ⊆ ( Base ‘ 𝑉 ) ) → ( 𝑏𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) )
235 42 50 234 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝑏𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) )
236 51 55 lsslinds ( ( 𝑉 ∈ LMod ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ∧ ( 𝑏𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) → ( ( 𝑏𝑤 ) ∈ ( LIndS ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) ↔ ( 𝑏𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) )
237 236 biimpar ( ( ( 𝑉 ∈ LMod ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ∧ ( 𝑏𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∧ ( 𝑏𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) → ( 𝑏𝑤 ) ∈ ( LIndS ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) )
238 42 67 235 47 237 syl31anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝑏𝑤 ) ∈ ( LIndS ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) )
239 eqid ( LSpan ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) = ( LSpan ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) )
240 55 52 239 51 lsslsp ( ( 𝑉 ∈ LMod ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ∧ ( 𝑏𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) → ( ( LSpan ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) ‘ ( 𝑏𝑤 ) ) = ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) )
241 240 eqcomd ( ( 𝑉 ∈ LMod ∧ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∈ ( LSubSp ‘ 𝑉 ) ∧ ( 𝑏𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) = ( ( LSpan ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) ‘ ( 𝑏𝑤 ) ) )
242 42 54 235 241 syl3anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) = ( ( LSpan ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) ‘ ( 𝑏𝑤 ) ) )
243 242 224 eqtr3d ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( LSpan ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) ‘ ( 𝑏𝑤 ) ) = ( Base ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) )
244 eqid ( LBasis ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) = ( LBasis ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) )
245 145 244 239 islbs4 ( ( 𝑏𝑤 ) ∈ ( LBasis ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) ↔ ( ( 𝑏𝑤 ) ∈ ( LIndS ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) ∧ ( ( LSpan ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) ‘ ( 𝑏𝑤 ) ) = ( Base ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) ) )
246 238 243 245 sylanbrc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( 𝑏𝑤 ) ∈ ( LBasis ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) )
247 eqid ( LBasis ‘ 𝐼 ) = ( LBasis ‘ 𝐼 )
248 244 247 lmimlbs ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ∈ ( ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) LMIso 𝐼 ) ∧ ( 𝑏𝑤 ) ∈ ( LBasis ‘ ( 𝑉s ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) ) ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ ( 𝑏𝑤 ) ) ∈ ( LBasis ‘ 𝐼 ) )
249 233 246 248 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ ( 𝑏𝑤 ) ) ∈ ( LBasis ‘ 𝐼 ) )
250 247 dimval ( ( 𝐼 ∈ LVec ∧ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ ( 𝑏𝑤 ) ) ∈ ( LBasis ‘ 𝐼 ) ) → ( dim ‘ 𝐼 ) = ( ♯ ‘ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ ( 𝑏𝑤 ) ) ) )
251 31 249 250 syl2anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( dim ‘ 𝐼 ) = ( ♯ ‘ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ ( 𝑏𝑤 ) ) ) )
252 f1imaeng ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) –1-1→ ran 𝐹 ∧ ( 𝑏𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∧ ( 𝑏𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) → ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ ( 𝑏𝑤 ) ) ≈ ( 𝑏𝑤 ) )
253 hasheni ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ ( 𝑏𝑤 ) ) ≈ ( 𝑏𝑤 ) → ( ♯ ‘ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ ( 𝑏𝑤 ) ) ) = ( ♯ ‘ ( 𝑏𝑤 ) ) )
254 252 253 syl ( ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) : ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) –1-1→ ran 𝐹 ∧ ( 𝑏𝑤 ) ⊆ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ∧ ( 𝑏𝑤 ) ∈ ( LIndS ‘ 𝑉 ) ) → ( ♯ ‘ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ ( 𝑏𝑤 ) ) ) = ( ♯ ‘ ( 𝑏𝑤 ) ) )
255 157 235 47 254 syl3anc ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ♯ ‘ ( ( 𝐹 ↾ ( ( LSpan ‘ 𝑉 ) ‘ ( 𝑏𝑤 ) ) ) “ ( 𝑏𝑤 ) ) ) = ( ♯ ‘ ( 𝑏𝑤 ) ) )
256 251 255 eqtrd ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( dim ‘ 𝐼 ) = ( ♯ ‘ ( 𝑏𝑤 ) ) )
257 29 256 oveq12d ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( ( dim ‘ 𝐾 ) +𝑒 ( dim ‘ 𝐼 ) ) = ( ( ♯ ‘ 𝑤 ) +𝑒 ( ♯ ‘ ( 𝑏𝑤 ) ) ) )
258 17 26 257 3eqtr4d ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) ∧ 𝑤𝑏 ) → ( dim ‘ 𝑉 ) = ( ( dim ‘ 𝐾 ) +𝑒 ( dim ‘ 𝐼 ) ) )
259 5 lbslinds ( LBasis ‘ 𝐾 ) ⊆ ( LIndS ‘ 𝐾 )
260 259 93 sselid ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑤 ∈ ( LIndS ‘ 𝐾 ) )
261 51 2 lsslinds ( ( 𝑉 ∈ LMod ∧ ( 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ∧ 𝑤 ⊆ ( 𝐹 “ { 0 } ) ) → ( 𝑤 ∈ ( LIndS ‘ 𝐾 ) ↔ 𝑤 ∈ ( LIndS ‘ 𝑉 ) ) )
262 261 biimpa ( ( ( 𝑉 ∈ LMod ∧ ( 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ∧ 𝑤 ⊆ ( 𝐹 “ { 0 } ) ) ∧ 𝑤 ∈ ( LIndS ‘ 𝐾 ) ) → 𝑤 ∈ ( LIndS ‘ 𝑉 ) )
263 98 101 109 260 262 syl31anc ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → 𝑤 ∈ ( LIndS ‘ 𝑉 ) )
264 24 islinds4 ( 𝑉 ∈ LVec → ( 𝑤 ∈ ( LIndS ‘ 𝑉 ) ↔ ∃ 𝑏 ∈ ( LBasis ‘ 𝑉 ) 𝑤𝑏 ) )
265 264 ad2antrr ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( 𝑤 ∈ ( LIndS ‘ 𝑉 ) ↔ ∃ 𝑏 ∈ ( LBasis ‘ 𝑉 ) 𝑤𝑏 ) )
266 263 265 mpbid ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ∃ 𝑏 ∈ ( LBasis ‘ 𝑉 ) 𝑤𝑏 )
267 258 266 r19.29a ( ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) ∧ 𝑤 ∈ ( LBasis ‘ 𝐾 ) ) → ( dim ‘ 𝑉 ) = ( ( dim ‘ 𝐾 ) +𝑒 ( dim ‘ 𝐼 ) ) )
268 9 267 exlimddv ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → ( dim ‘ 𝑉 ) = ( ( dim ‘ 𝐾 ) +𝑒 ( dim ‘ 𝐼 ) ) )