Step |
Hyp |
Ref |
Expression |
1 |
|
ipass.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
ipass.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
3 |
|
ipass.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
4 |
|
cjcl |
⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
5 |
1 2 3
|
dipassr |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ ( ∗ ‘ 𝐵 ) ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( ( ∗ ‘ 𝐵 ) 𝑆 𝐶 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) · ( 𝐴 𝑃 𝐶 ) ) ) |
6 |
4 5
|
syl3anr2 |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( ( ∗ ‘ 𝐵 ) 𝑆 𝐶 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) · ( 𝐴 𝑃 𝐶 ) ) ) |
7 |
|
cjcj |
⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) = 𝐵 ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) = 𝐵 ) |
9 |
8
|
adantl |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) = 𝐵 ) |
10 |
9
|
oveq1d |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) · ( 𝐴 𝑃 𝐶 ) ) = ( 𝐵 · ( 𝐴 𝑃 𝐶 ) ) ) |
11 |
6 10
|
eqtrd |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( ( ∗ ‘ 𝐵 ) 𝑆 𝐶 ) ) = ( 𝐵 · ( 𝐴 𝑃 𝐶 ) ) ) |