Metamath Proof Explorer


Theorem dipassr2

Description: "Associative" law for inner product. Conjugate version of dipassr . (Contributed by NM, 23-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ipass.1 𝑋 = ( BaseSet ‘ 𝑈 )
ipass.4 𝑆 = ( ·𝑠OLD𝑈 )
ipass.7 𝑃 = ( ·𝑖OLD𝑈 )
Assertion dipassr2 ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴𝑋𝐵 ∈ ℂ ∧ 𝐶𝑋 ) ) → ( 𝐴 𝑃 ( ( ∗ ‘ 𝐵 ) 𝑆 𝐶 ) ) = ( 𝐵 · ( 𝐴 𝑃 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 ipass.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 ipass.4 𝑆 = ( ·𝑠OLD𝑈 )
3 ipass.7 𝑃 = ( ·𝑖OLD𝑈 )
4 cjcl ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) ∈ ℂ )
5 1 2 3 dipassr ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴𝑋 ∧ ( ∗ ‘ 𝐵 ) ∈ ℂ ∧ 𝐶𝑋 ) ) → ( 𝐴 𝑃 ( ( ∗ ‘ 𝐵 ) 𝑆 𝐶 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) · ( 𝐴 𝑃 𝐶 ) ) )
6 4 5 syl3anr2 ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴𝑋𝐵 ∈ ℂ ∧ 𝐶𝑋 ) ) → ( 𝐴 𝑃 ( ( ∗ ‘ 𝐵 ) 𝑆 𝐶 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) · ( 𝐴 𝑃 𝐶 ) ) )
7 cjcj ( 𝐵 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) = 𝐵 )
8 7 3ad2ant2 ( ( 𝐴𝑋𝐵 ∈ ℂ ∧ 𝐶𝑋 ) → ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) = 𝐵 )
9 8 adantl ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴𝑋𝐵 ∈ ℂ ∧ 𝐶𝑋 ) ) → ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) = 𝐵 )
10 9 oveq1d ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴𝑋𝐵 ∈ ℂ ∧ 𝐶𝑋 ) ) → ( ( ∗ ‘ ( ∗ ‘ 𝐵 ) ) · ( 𝐴 𝑃 𝐶 ) ) = ( 𝐵 · ( 𝐴 𝑃 𝐶 ) ) )
11 6 10 eqtrd ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴𝑋𝐵 ∈ ℂ ∧ 𝐶𝑋 ) ) → ( 𝐴 𝑃 ( ( ∗ ‘ 𝐵 ) 𝑆 𝐶 ) ) = ( 𝐵 · ( 𝐴 𝑃 𝐶 ) ) )