| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ipcl.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | ipcl.7 | ⊢ 𝑃  =  ( ·𝑖OLD ‘ 𝑈 ) | 
						
							| 3 |  | eqid | ⊢ (  +𝑣  ‘ 𝑈 )  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 4 |  | eqid | ⊢ (  ·𝑠OLD  ‘ 𝑈 )  =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 5 |  | eqid | ⊢ ( normCV ‘ 𝑈 )  =  ( normCV ‘ 𝑈 ) | 
						
							| 6 | 1 3 4 5 2 | ipval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝑃 𝐵 )  =  ( Σ 𝑘  ∈  ( 1 ... 4 ) ( ( i ↑ 𝑘 )  ·  ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 (  +𝑣  ‘ 𝑈 ) ( ( i ↑ 𝑘 ) (  ·𝑠OLD  ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) )  /  4 ) ) | 
						
							| 7 |  | fzfid | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 1 ... 4 )  ∈  Fin ) | 
						
							| 8 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 9 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... 4 )  →  𝑘  ∈  ℕ ) | 
						
							| 10 | 9 | nnnn0d | ⊢ ( 𝑘  ∈  ( 1 ... 4 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 11 |  | expcl | ⊢ ( ( i  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( i ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 12 | 8 10 11 | sylancr | ⊢ ( 𝑘  ∈  ( 1 ... 4 )  →  ( i ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑘  ∈  ( 1 ... 4 ) )  →  ( i ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 14 | 1 3 4 5 2 | ipval2lem4 | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( i ↑ 𝑘 )  ∈  ℂ )  →  ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 (  +𝑣  ‘ 𝑈 ) ( ( i ↑ 𝑘 ) (  ·𝑠OLD  ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 15 | 12 14 | sylan2 | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑘  ∈  ( 1 ... 4 ) )  →  ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 (  +𝑣  ‘ 𝑈 ) ( ( i ↑ 𝑘 ) (  ·𝑠OLD  ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 16 | 13 15 | mulcld | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑘  ∈  ( 1 ... 4 ) )  →  ( ( i ↑ 𝑘 )  ·  ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 (  +𝑣  ‘ 𝑈 ) ( ( i ↑ 𝑘 ) (  ·𝑠OLD  ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 17 | 7 16 | fsumcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  Σ 𝑘  ∈  ( 1 ... 4 ) ( ( i ↑ 𝑘 )  ·  ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 (  +𝑣  ‘ 𝑈 ) ( ( i ↑ 𝑘 ) (  ·𝑠OLD  ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 18 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 19 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 20 |  | divcl | ⊢ ( ( Σ 𝑘  ∈  ( 1 ... 4 ) ( ( i ↑ 𝑘 )  ·  ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 (  +𝑣  ‘ 𝑈 ) ( ( i ↑ 𝑘 ) (  ·𝑠OLD  ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) )  ∈  ℂ  ∧  4  ∈  ℂ  ∧  4  ≠  0 )  →  ( Σ 𝑘  ∈  ( 1 ... 4 ) ( ( i ↑ 𝑘 )  ·  ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 (  +𝑣  ‘ 𝑈 ) ( ( i ↑ 𝑘 ) (  ·𝑠OLD  ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) )  /  4 )  ∈  ℂ ) | 
						
							| 21 | 18 19 20 | mp3an23 | ⊢ ( Σ 𝑘  ∈  ( 1 ... 4 ) ( ( i ↑ 𝑘 )  ·  ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 (  +𝑣  ‘ 𝑈 ) ( ( i ↑ 𝑘 ) (  ·𝑠OLD  ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) )  ∈  ℂ  →  ( Σ 𝑘  ∈  ( 1 ... 4 ) ( ( i ↑ 𝑘 )  ·  ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 (  +𝑣  ‘ 𝑈 ) ( ( i ↑ 𝑘 ) (  ·𝑠OLD  ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) )  /  4 )  ∈  ℂ ) | 
						
							| 22 | 17 21 | syl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( Σ 𝑘  ∈  ( 1 ... 4 ) ( ( i ↑ 𝑘 )  ·  ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 (  +𝑣  ‘ 𝑈 ) ( ( i ↑ 𝑘 ) (  ·𝑠OLD  ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) )  /  4 )  ∈  ℂ ) | 
						
							| 23 | 6 22 | eqeltrd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝑃 𝐵 )  ∈  ℂ ) |