Step |
Hyp |
Ref |
Expression |
1 |
|
dipfval.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
dipfval.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
dipfval.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
4 |
|
dipfval.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
5 |
|
dipfval.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
6 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = ( BaseSet ‘ 𝑈 ) ) |
7 |
6 1
|
eqtr4di |
⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = 𝑋 ) |
8 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( normCV ‘ 𝑢 ) = ( normCV ‘ 𝑈 ) ) |
9 |
8 4
|
eqtr4di |
⊢ ( 𝑢 = 𝑈 → ( normCV ‘ 𝑢 ) = 𝑁 ) |
10 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( +𝑣 ‘ 𝑢 ) = ( +𝑣 ‘ 𝑈 ) ) |
11 |
10 2
|
eqtr4di |
⊢ ( 𝑢 = 𝑈 → ( +𝑣 ‘ 𝑢 ) = 𝐺 ) |
12 |
|
eqidd |
⊢ ( 𝑢 = 𝑈 → 𝑥 = 𝑥 ) |
13 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( ·𝑠OLD ‘ 𝑢 ) = ( ·𝑠OLD ‘ 𝑈 ) ) |
14 |
13 3
|
eqtr4di |
⊢ ( 𝑢 = 𝑈 → ( ·𝑠OLD ‘ 𝑢 ) = 𝑆 ) |
15 |
14
|
oveqd |
⊢ ( 𝑢 = 𝑈 → ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) = ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) |
16 |
11 12 15
|
oveq123d |
⊢ ( 𝑢 = 𝑈 → ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) = ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) |
17 |
9 16
|
fveq12d |
⊢ ( 𝑢 = 𝑈 → ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ) |
18 |
17
|
oveq1d |
⊢ ( 𝑢 = 𝑈 → ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑢 = 𝑈 → ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) = ( ( i ↑ 𝑘 ) · ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) ) |
20 |
19
|
sumeq2sdv |
⊢ ( 𝑢 = 𝑈 → Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) = Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝑢 = 𝑈 → ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) = ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) |
22 |
7 7 21
|
mpoeq123dv |
⊢ ( 𝑢 = 𝑈 → ( 𝑥 ∈ ( BaseSet ‘ 𝑢 ) , 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ) |
23 |
|
df-dip |
⊢ ·𝑖OLD = ( 𝑢 ∈ NrmCVec ↦ ( 𝑥 ∈ ( BaseSet ‘ 𝑢 ) , 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ) |
24 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
25 |
24 24
|
mpoex |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ∈ V |
26 |
22 23 25
|
fvmpt |
⊢ ( 𝑈 ∈ NrmCVec → ( ·𝑖OLD ‘ 𝑈 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ) |
27 |
5 26
|
syl5eq |
⊢ ( 𝑈 ∈ NrmCVec → 𝑃 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( 𝑁 ‘ ( 𝑥 𝐺 ( ( i ↑ 𝑘 ) 𝑆 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ) |