| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ipsubdir.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
ipsubdir.3 |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
| 3 |
|
ipsubdir.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
| 4 |
|
idd |
⊢ ( 𝑈 ∈ CPreHilOLD → ( 𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋 ) ) |
| 5 |
|
phnv |
⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) |
| 6 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 7 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
| 8 |
1 7
|
nvscl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) |
| 9 |
6 8
|
mp3an2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) |
| 10 |
5 9
|
sylan |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐵 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) |
| 11 |
10
|
ex |
⊢ ( 𝑈 ∈ CPreHilOLD → ( 𝐵 ∈ 𝑋 → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) ) |
| 12 |
|
idd |
⊢ ( 𝑈 ∈ CPreHilOLD → ( 𝐶 ∈ 𝑋 → 𝐶 ∈ 𝑋 ) ) |
| 13 |
4 11 12
|
3anim123d |
⊢ ( 𝑈 ∈ CPreHilOLD → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ) |
| 14 |
13
|
imp |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) |
| 15 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
| 16 |
1 15 3
|
dipdir |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) 𝑃 𝐶 ) = ( ( 𝐴 𝑃 𝐶 ) + ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) ) ) |
| 17 |
14 16
|
syldan |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) 𝑃 𝐶 ) = ( ( 𝐴 𝑃 𝐶 ) + ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) ) ) |
| 18 |
1 15 7 2
|
nvmval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
| 19 |
5 18
|
syl3an1 |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
| 20 |
19
|
3adant3r3 |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
| 21 |
20
|
oveq1d |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑀 𝐵 ) 𝑃 𝐶 ) = ( ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) 𝑃 𝐶 ) ) |
| 22 |
1 7 3
|
dipass |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) = ( - 1 · ( 𝐵 𝑃 𝐶 ) ) ) |
| 23 |
6 22
|
mp3anr1 |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) = ( - 1 · ( 𝐵 𝑃 𝐶 ) ) ) |
| 24 |
1 3
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝑃 𝐶 ) ∈ ℂ ) |
| 25 |
24
|
3expb |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝑃 𝐶 ) ∈ ℂ ) |
| 26 |
5 25
|
sylan |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝑃 𝐶 ) ∈ ℂ ) |
| 27 |
26
|
mulm1d |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( - 1 · ( 𝐵 𝑃 𝐶 ) ) = - ( 𝐵 𝑃 𝐶 ) ) |
| 28 |
23 27
|
eqtrd |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) = - ( 𝐵 𝑃 𝐶 ) ) |
| 29 |
28
|
3adantr1 |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) = - ( 𝐵 𝑃 𝐶 ) ) |
| 30 |
29
|
oveq2d |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑃 𝐶 ) + ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) ) = ( ( 𝐴 𝑃 𝐶 ) + - ( 𝐵 𝑃 𝐶 ) ) ) |
| 31 |
1 3
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐶 ) ∈ ℂ ) |
| 32 |
31
|
3adant3r2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑃 𝐶 ) ∈ ℂ ) |
| 33 |
24
|
3adant3r1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝑃 𝐶 ) ∈ ℂ ) |
| 34 |
32 33
|
negsubd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑃 𝐶 ) + - ( 𝐵 𝑃 𝐶 ) ) = ( ( 𝐴 𝑃 𝐶 ) − ( 𝐵 𝑃 𝐶 ) ) ) |
| 35 |
5 34
|
sylan |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑃 𝐶 ) + - ( 𝐵 𝑃 𝐶 ) ) = ( ( 𝐴 𝑃 𝐶 ) − ( 𝐵 𝑃 𝐶 ) ) ) |
| 36 |
30 35
|
eqtr2d |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑃 𝐶 ) − ( 𝐵 𝑃 𝐶 ) ) = ( ( 𝐴 𝑃 𝐶 ) + ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) ) ) |
| 37 |
17 21 36
|
3eqtr4d |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑀 𝐵 ) 𝑃 𝐶 ) = ( ( 𝐴 𝑃 𝐶 ) − ( 𝐵 𝑃 𝐶 ) ) ) |