Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
rpvmasum.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
5 |
|
rpvmasum.b |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
6 |
|
rpvmasum.t |
⊢ 𝑇 = ( ◡ 𝐿 “ { 𝐴 } ) |
7 |
|
nnex |
⊢ ℕ ∈ V |
8 |
|
inss1 |
⊢ ( ℙ ∩ 𝑇 ) ⊆ ℙ |
9 |
|
prmssnn |
⊢ ℙ ⊆ ℕ |
10 |
8 9
|
sstri |
⊢ ( ℙ ∩ 𝑇 ) ⊆ ℕ |
11 |
|
ssdomg |
⊢ ( ℕ ∈ V → ( ( ℙ ∩ 𝑇 ) ⊆ ℕ → ( ℙ ∩ 𝑇 ) ≼ ℕ ) ) |
12 |
7 10 11
|
mp2 |
⊢ ( ℙ ∩ 𝑇 ) ≼ ℕ |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( ℙ ∩ 𝑇 ) ≼ ℕ ) |
14 |
|
logno1 |
⊢ ¬ ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) |
15 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → 𝑁 ∈ ℕ ) |
16 |
15
|
phicld |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( ϕ ‘ 𝑁 ) ∈ ℕ ) |
17 |
16
|
nnred |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( ϕ ‘ 𝑁 ) ∈ ℝ ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑥 ∈ ℝ+ ) → ( ϕ ‘ 𝑁 ) ∈ ℝ ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( ℙ ∩ 𝑇 ) ∈ Fin ) |
20 |
|
inss2 |
⊢ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ⊆ ( ℙ ∩ 𝑇 ) |
21 |
|
ssfi |
⊢ ( ( ( ℙ ∩ 𝑇 ) ∈ Fin ∧ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ⊆ ( ℙ ∩ 𝑇 ) ) → ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ∈ Fin ) |
22 |
19 20 21
|
sylancl |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ∈ Fin ) |
23 |
|
elinel2 |
⊢ ( 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) → 𝑛 ∈ ( ℙ ∩ 𝑇 ) ) |
24 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑛 ∈ ( ℙ ∩ 𝑇 ) ) → 𝑛 ∈ ( ℙ ∩ 𝑇 ) ) |
25 |
10 24
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑛 ∈ ( ℙ ∩ 𝑇 ) ) → 𝑛 ∈ ℕ ) |
26 |
25
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑛 ∈ ( ℙ ∩ 𝑇 ) ) → 𝑛 ∈ ℝ+ ) |
27 |
|
relogcl |
⊢ ( 𝑛 ∈ ℝ+ → ( log ‘ 𝑛 ) ∈ ℝ ) |
28 |
26 27
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑛 ∈ ( ℙ ∩ 𝑇 ) ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
29 |
28 25
|
nndivred |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑛 ∈ ( ℙ ∩ 𝑇 ) ) → ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
30 |
23 29
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) → ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
31 |
22 30
|
fsumrecl |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
33 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
34 |
17
|
recnd |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( ϕ ‘ 𝑁 ) ∈ ℂ ) |
35 |
|
o1const |
⊢ ( ( ℝ+ ⊆ ℝ ∧ ( ϕ ‘ 𝑁 ) ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ ( ϕ ‘ 𝑁 ) ) ∈ 𝑂(1) ) |
36 |
33 34 35
|
sylancr |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( 𝑥 ∈ ℝ+ ↦ ( ϕ ‘ 𝑁 ) ) ∈ 𝑂(1) ) |
37 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ℝ+ ⊆ ℝ ) |
38 |
|
1red |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → 1 ∈ ℝ ) |
39 |
19 29
|
fsumrecl |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → Σ 𝑛 ∈ ( ℙ ∩ 𝑇 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
40 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
41 |
25
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑛 ∈ ( ℙ ∩ 𝑇 ) ) → 1 ≤ 𝑛 ) |
42 |
|
1rp |
⊢ 1 ∈ ℝ+ |
43 |
|
logleb |
⊢ ( ( 1 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 1 ≤ 𝑛 ↔ ( log ‘ 1 ) ≤ ( log ‘ 𝑛 ) ) ) |
44 |
42 26 43
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑛 ∈ ( ℙ ∩ 𝑇 ) ) → ( 1 ≤ 𝑛 ↔ ( log ‘ 1 ) ≤ ( log ‘ 𝑛 ) ) ) |
45 |
41 44
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑛 ∈ ( ℙ ∩ 𝑇 ) ) → ( log ‘ 1 ) ≤ ( log ‘ 𝑛 ) ) |
46 |
40 45
|
eqbrtrrid |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑛 ∈ ( ℙ ∩ 𝑇 ) ) → 0 ≤ ( log ‘ 𝑛 ) ) |
47 |
28 26 46
|
divge0d |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑛 ∈ ( ℙ ∩ 𝑇 ) ) → 0 ≤ ( ( log ‘ 𝑛 ) / 𝑛 ) ) |
48 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ⊆ ( ℙ ∩ 𝑇 ) ) |
49 |
19 29 47 48
|
fsumless |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ≤ Σ 𝑛 ∈ ( ℙ ∩ 𝑇 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) |
50 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ≤ Σ 𝑛 ∈ ( ℙ ∩ 𝑇 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) |
51 |
37 32 38 39 50
|
ello1d |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ∈ ≤𝑂(1) ) |
52 |
|
0red |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → 0 ∈ ℝ ) |
53 |
23 47
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) → 0 ≤ ( ( log ‘ 𝑛 ) / 𝑛 ) ) |
54 |
22 30 53
|
fsumge0 |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → 0 ≤ Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) |
55 |
54
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑥 ∈ ℝ+ ) → 0 ≤ Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) |
56 |
32 52 55
|
o1lo12 |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ∈ ≤𝑂(1) ) ) |
57 |
51 56
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ∈ 𝑂(1) ) |
58 |
18 32 36 57
|
o1mul2 |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( 𝑥 ∈ ℝ+ ↦ ( ( ϕ ‘ 𝑁 ) · Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ) ∈ 𝑂(1) ) |
59 |
17 31
|
remulcld |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( ( ϕ ‘ 𝑁 ) · Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ∈ ℝ ) |
60 |
59
|
recnd |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( ( ϕ ‘ 𝑁 ) · Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
61 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ϕ ‘ 𝑁 ) · Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
62 |
|
relogcl |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) |
63 |
62
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
64 |
63
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
65 |
1 2 3 4 5 6
|
rplogsum |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
67 |
61 64 66
|
o1dif |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( ( 𝑥 ∈ ℝ+ ↦ ( ( ϕ ‘ 𝑁 ) · Σ 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ) ) |
68 |
58 67
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ℙ ∩ 𝑇 ) ∈ Fin ) → ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ) |
69 |
68
|
ex |
⊢ ( 𝜑 → ( ( ℙ ∩ 𝑇 ) ∈ Fin → ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ∈ 𝑂(1) ) ) |
70 |
14 69
|
mtoi |
⊢ ( 𝜑 → ¬ ( ℙ ∩ 𝑇 ) ∈ Fin ) |
71 |
|
nnenom |
⊢ ℕ ≈ ω |
72 |
|
sdomentr |
⊢ ( ( ( ℙ ∩ 𝑇 ) ≺ ℕ ∧ ℕ ≈ ω ) → ( ℙ ∩ 𝑇 ) ≺ ω ) |
73 |
71 72
|
mpan2 |
⊢ ( ( ℙ ∩ 𝑇 ) ≺ ℕ → ( ℙ ∩ 𝑇 ) ≺ ω ) |
74 |
|
isfinite2 |
⊢ ( ( ℙ ∩ 𝑇 ) ≺ ω → ( ℙ ∩ 𝑇 ) ∈ Fin ) |
75 |
73 74
|
syl |
⊢ ( ( ℙ ∩ 𝑇 ) ≺ ℕ → ( ℙ ∩ 𝑇 ) ∈ Fin ) |
76 |
70 75
|
nsyl |
⊢ ( 𝜑 → ¬ ( ℙ ∩ 𝑇 ) ≺ ℕ ) |
77 |
|
bren2 |
⊢ ( ( ℙ ∩ 𝑇 ) ≈ ℕ ↔ ( ( ℙ ∩ 𝑇 ) ≼ ℕ ∧ ¬ ( ℙ ∩ 𝑇 ) ≺ ℕ ) ) |
78 |
13 76 77
|
sylanbrc |
⊢ ( 𝜑 → ( ℙ ∩ 𝑇 ) ≈ ℕ ) |