Step |
Hyp |
Ref |
Expression |
1 |
|
dirkercncf.d |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) |
2 |
1
|
dirkerf |
⊢ ( 𝑁 ∈ ℕ → ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) |
3 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
4 |
3
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ℝ ⊆ ℂ ) |
5 |
2 4
|
fssd |
⊢ ( 𝑁 ∈ ℕ → ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℂ ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℂ ) |
7 |
|
oveq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 mod ( 2 · π ) ) = ( 𝑤 mod ( 2 · π ) ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑦 mod ( 2 · π ) ) = 0 ↔ ( 𝑤 mod ( 2 · π ) ) = 0 ) ) |
9 |
|
oveq2 |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) = ( ( 𝑛 + ( 1 / 2 ) ) · 𝑤 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑦 = 𝑤 → ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) = ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑤 ) ) ) |
11 |
|
oveq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 / 2 ) = ( 𝑤 / 2 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝑦 = 𝑤 → ( sin ‘ ( 𝑦 / 2 ) ) = ( sin ‘ ( 𝑤 / 2 ) ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑦 = 𝑤 → ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) = ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) |
14 |
10 13
|
oveq12d |
⊢ ( 𝑦 = 𝑤 → ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) = ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑤 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) ) |
15 |
8 14
|
ifbieq2d |
⊢ ( 𝑦 = 𝑤 → if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) = if ( ( 𝑤 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑤 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) ) ) |
16 |
15
|
cbvmptv |
⊢ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) = ( 𝑤 ∈ ℝ ↦ if ( ( 𝑤 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑤 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) ) ) |
17 |
16
|
mpteq2i |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑤 ∈ ℝ ↦ if ( ( 𝑤 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑤 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) ) ) ) |
18 |
1 17
|
eqtri |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝑤 ∈ ℝ ↦ if ( ( 𝑤 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑤 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) ) ) ) |
19 |
|
eqid |
⊢ ( 𝑦 − π ) = ( 𝑦 − π ) |
20 |
|
eqid |
⊢ ( 𝑦 + π ) = ( 𝑦 + π ) |
21 |
|
eqid |
⊢ ( 𝑤 ∈ ( ( 𝑦 − π ) (,) ( 𝑦 + π ) ) ↦ ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑤 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) ) = ( 𝑤 ∈ ( ( 𝑦 − π ) (,) ( 𝑦 + π ) ) ↦ ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑤 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) ) |
22 |
|
eqid |
⊢ ( 𝑤 ∈ ( ( 𝑦 − π ) (,) ( 𝑦 + π ) ) ↦ ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) = ( 𝑤 ∈ ( ( 𝑦 − π ) (,) ( 𝑦 + π ) ) ↦ ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) |
23 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → 𝑁 ∈ ℕ ) |
24 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → 𝑦 ∈ ℝ ) |
25 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( 𝑦 mod ( 2 · π ) ) = 0 ) |
26 |
18 19 20 21 22 23 24 25
|
dirkercncflem3 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑦 ) ∈ ( ( 𝐷 ‘ 𝑁 ) limℂ 𝑦 ) ) |
27 |
3
|
jctl |
⊢ ( 𝑦 ∈ ℝ → ( ℝ ⊆ ℂ ∧ 𝑦 ∈ ℝ ) ) |
28 |
27
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( ℝ ⊆ ℂ ∧ 𝑦 ∈ ℝ ) ) |
29 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
30 |
29
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
31 |
29 30
|
cnplimc |
⊢ ( ( ℝ ⊆ ℂ ∧ 𝑦 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑁 ) ∈ ( ( ( topGen ‘ ran (,) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℂ ∧ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑦 ) ∈ ( ( 𝐷 ‘ 𝑁 ) limℂ 𝑦 ) ) ) ) |
32 |
28 31
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( ( 𝐷 ‘ 𝑁 ) ∈ ( ( ( topGen ‘ ran (,) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℂ ∧ ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑦 ) ∈ ( ( 𝐷 ‘ 𝑁 ) limℂ 𝑦 ) ) ) ) |
33 |
6 26 32
|
mpbir2and |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( 𝐷 ‘ 𝑁 ) ∈ ( ( ( topGen ‘ ran (,) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
34 |
29
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
35 |
34
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( TopOpen ‘ ℂfld ) ∈ Top ) |
36 |
2
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) |
37 |
3
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ℝ ⊆ ℂ ) |
38 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
39 |
38
|
toponunii |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
40 |
29
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
41 |
40
|
toponunii |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
42 |
39 41
|
cnprest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ( ( 𝐷 ‘ 𝑁 ) ∈ ( ( ( topGen ‘ ran (,) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( 𝐷 ‘ 𝑁 ) ∈ ( ( ( topGen ‘ ran (,) ) CnP ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ‘ 𝑦 ) ) ) |
43 |
35 36 37 42
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( ( 𝐷 ‘ 𝑁 ) ∈ ( ( ( topGen ‘ ran (,) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( 𝐷 ‘ 𝑁 ) ∈ ( ( ( topGen ‘ ran (,) ) CnP ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ‘ 𝑦 ) ) ) |
44 |
33 43
|
mpbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( 𝐷 ‘ 𝑁 ) ∈ ( ( ( topGen ‘ ran (,) ) CnP ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ‘ 𝑦 ) ) |
45 |
30
|
eqcomi |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( topGen ‘ ran (,) ) |
46 |
45
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( topGen ‘ ran (,) ) ) |
47 |
46
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( ( topGen ‘ ran (,) ) CnP ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) = ( ( topGen ‘ ran (,) ) CnP ( topGen ‘ ran (,) ) ) ) |
48 |
47
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( ( ( topGen ‘ ran (,) ) CnP ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ‘ 𝑦 ) = ( ( ( topGen ‘ ran (,) ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑦 ) ) |
49 |
44 48
|
eleqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( 𝐷 ‘ 𝑁 ) ∈ ( ( ( topGen ‘ ran (,) ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑦 ) ) |
50 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ¬ ( 𝑦 mod ( 2 · π ) ) = 0 ) → 𝑁 ∈ ℕ ) |
51 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ¬ ( 𝑦 mod ( 2 · π ) ) = 0 ) → 𝑦 ∈ ℝ ) |
52 |
|
neqne |
⊢ ( ¬ ( 𝑦 mod ( 2 · π ) ) = 0 → ( 𝑦 mod ( 2 · π ) ) ≠ 0 ) |
53 |
52
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ¬ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( 𝑦 mod ( 2 · π ) ) ≠ 0 ) |
54 |
|
eqid |
⊢ ( ⌊ ‘ ( 𝑦 / ( 2 · π ) ) ) = ( ⌊ ‘ ( 𝑦 / ( 2 · π ) ) ) |
55 |
|
eqid |
⊢ ( ( ⌊ ‘ ( 𝑦 / ( 2 · π ) ) ) + 1 ) = ( ( ⌊ ‘ ( 𝑦 / ( 2 · π ) ) ) + 1 ) |
56 |
|
eqid |
⊢ ( ( ⌊ ‘ ( 𝑦 / ( 2 · π ) ) ) · ( 2 · π ) ) = ( ( ⌊ ‘ ( 𝑦 / ( 2 · π ) ) ) · ( 2 · π ) ) |
57 |
|
eqid |
⊢ ( ( ( ⌊ ‘ ( 𝑦 / ( 2 · π ) ) ) + 1 ) · ( 2 · π ) ) = ( ( ( ⌊ ‘ ( 𝑦 / ( 2 · π ) ) ) + 1 ) · ( 2 · π ) ) |
58 |
18 50 51 53 54 55 56 57
|
dirkercncflem4 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ∧ ¬ ( 𝑦 mod ( 2 · π ) ) = 0 ) → ( 𝐷 ‘ 𝑁 ) ∈ ( ( ( topGen ‘ ran (,) ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑦 ) ) |
59 |
49 58
|
pm2.61dan |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℝ ) → ( 𝐷 ‘ 𝑁 ) ∈ ( ( ( topGen ‘ ran (,) ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑦 ) ) |
60 |
59
|
ralrimiva |
⊢ ( 𝑁 ∈ ℕ → ∀ 𝑦 ∈ ℝ ( 𝐷 ‘ 𝑁 ) ∈ ( ( ( topGen ‘ ran (,) ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑦 ) ) |
61 |
|
cncnp |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ) → ( ( 𝐷 ‘ 𝑁 ) ∈ ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) ↔ ( ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ∧ ∀ 𝑦 ∈ ℝ ( 𝐷 ‘ 𝑁 ) ∈ ( ( ( topGen ‘ ran (,) ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑦 ) ) ) ) |
62 |
38 38 61
|
mp2an |
⊢ ( ( 𝐷 ‘ 𝑁 ) ∈ ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) ↔ ( ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ∧ ∀ 𝑦 ∈ ℝ ( 𝐷 ‘ 𝑁 ) ∈ ( ( ( topGen ‘ ran (,) ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑦 ) ) ) |
63 |
2 60 62
|
sylanbrc |
⊢ ( 𝑁 ∈ ℕ → ( 𝐷 ‘ 𝑁 ) ∈ ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) ) |
64 |
29 30 30
|
cncfcn |
⊢ ( ( ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( ℝ –cn→ ℝ ) = ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) ) |
65 |
3 3 64
|
mp2an |
⊢ ( ℝ –cn→ ℝ ) = ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) |
66 |
63 65
|
eleqtrrdi |
⊢ ( 𝑁 ∈ ℕ → ( 𝐷 ‘ 𝑁 ) ∈ ( ℝ –cn→ ℝ ) ) |