Step |
Hyp |
Ref |
Expression |
1 |
|
2cnd |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → 2 ∈ ℂ ) |
2 |
|
picn |
⊢ π ∈ ℂ |
3 |
2
|
a1i |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → π ∈ ℂ ) |
4 |
1 3
|
mulcld |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( 2 · π ) ∈ ℂ ) |
5 |
|
recn |
⊢ ( 𝑆 ∈ ℝ → 𝑆 ∈ ℂ ) |
6 |
5
|
adantr |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → 𝑆 ∈ ℂ ) |
7 |
6
|
halfcld |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( 𝑆 / 2 ) ∈ ℂ ) |
8 |
7
|
sincld |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( sin ‘ ( 𝑆 / 2 ) ) ∈ ℂ ) |
9 |
|
2ne0 |
⊢ 2 ≠ 0 |
10 |
9
|
a1i |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → 2 ≠ 0 ) |
11 |
|
0re |
⊢ 0 ∈ ℝ |
12 |
|
pipos |
⊢ 0 < π |
13 |
11 12
|
gtneii |
⊢ π ≠ 0 |
14 |
13
|
a1i |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → π ≠ 0 ) |
15 |
1 3 10 14
|
mulne0d |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( 2 · π ) ≠ 0 ) |
16 |
6 1 3 10 14
|
divdiv1d |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( ( 𝑆 / 2 ) / π ) = ( 𝑆 / ( 2 · π ) ) ) |
17 |
|
simpr |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) |
18 |
|
2rp |
⊢ 2 ∈ ℝ+ |
19 |
|
pirp |
⊢ π ∈ ℝ+ |
20 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ π ∈ ℝ+ ) → ( 2 · π ) ∈ ℝ+ ) |
21 |
18 19 20
|
mp2an |
⊢ ( 2 · π ) ∈ ℝ+ |
22 |
|
mod0 |
⊢ ( ( 𝑆 ∈ ℝ ∧ ( 2 · π ) ∈ ℝ+ ) → ( ( 𝑆 mod ( 2 · π ) ) = 0 ↔ ( 𝑆 / ( 2 · π ) ) ∈ ℤ ) ) |
23 |
21 22
|
mpan2 |
⊢ ( 𝑆 ∈ ℝ → ( ( 𝑆 mod ( 2 · π ) ) = 0 ↔ ( 𝑆 / ( 2 · π ) ) ∈ ℤ ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( ( 𝑆 mod ( 2 · π ) ) = 0 ↔ ( 𝑆 / ( 2 · π ) ) ∈ ℤ ) ) |
25 |
17 24
|
mtbid |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ¬ ( 𝑆 / ( 2 · π ) ) ∈ ℤ ) |
26 |
16 25
|
eqneltrd |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ¬ ( ( 𝑆 / 2 ) / π ) ∈ ℤ ) |
27 |
|
sineq0 |
⊢ ( ( 𝑆 / 2 ) ∈ ℂ → ( ( sin ‘ ( 𝑆 / 2 ) ) = 0 ↔ ( ( 𝑆 / 2 ) / π ) ∈ ℤ ) ) |
28 |
7 27
|
syl |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( ( sin ‘ ( 𝑆 / 2 ) ) = 0 ↔ ( ( 𝑆 / 2 ) / π ) ∈ ℤ ) ) |
29 |
26 28
|
mtbird |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ¬ ( sin ‘ ( 𝑆 / 2 ) ) = 0 ) |
30 |
29
|
neqned |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( sin ‘ ( 𝑆 / 2 ) ) ≠ 0 ) |
31 |
4 8 15 30
|
mulne0d |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( ( 2 · π ) · ( sin ‘ ( 𝑆 / 2 ) ) ) ≠ 0 ) |