Step |
Hyp |
Ref |
Expression |
1 |
|
dirkertrigeqlem2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
dirkertrigeqlem2.sinne0 |
⊢ ( 𝜑 → ( sin ‘ 𝐴 ) ≠ 0 ) |
3 |
|
dirkertrigeqlem2.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
5 |
4
|
halfcld |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℂ ) |
6 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
7 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℤ ) |
8 |
7
|
zcnd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℂ ) |
9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝑛 ∈ ℂ ) |
10 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
12 |
9 11
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑛 · 𝐴 ) ∈ ℂ ) |
13 |
12
|
coscld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( cos ‘ ( 𝑛 · 𝐴 ) ) ∈ ℂ ) |
14 |
6 13
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ∈ ℂ ) |
15 |
5 14
|
addcld |
⊢ ( 𝜑 → ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) ∈ ℂ ) |
16 |
10
|
sincld |
⊢ ( 𝜑 → ( sin ‘ 𝐴 ) ∈ ℂ ) |
17 |
15 16 2
|
divcan4d |
⊢ ( 𝜑 → ( ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) · ( sin ‘ 𝐴 ) ) / ( sin ‘ 𝐴 ) ) = ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) ) |
18 |
17
|
eqcomd |
⊢ ( 𝜑 → ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) = ( ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) · ( sin ‘ 𝐴 ) ) / ( sin ‘ 𝐴 ) ) ) |
19 |
6 16 13
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( cos ‘ ( 𝑛 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) |
20 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( sin ‘ 𝐴 ) ∈ ℂ ) |
21 |
13 20
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( cos ‘ ( 𝑛 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) = ( ( sin ‘ 𝐴 ) · ( cos ‘ ( 𝑛 · 𝐴 ) ) ) ) |
22 |
|
sinmulcos |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑛 · 𝐴 ) ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( cos ‘ ( 𝑛 · 𝐴 ) ) ) = ( ( ( sin ‘ ( 𝐴 + ( 𝑛 · 𝐴 ) ) ) + ( sin ‘ ( 𝐴 − ( 𝑛 · 𝐴 ) ) ) ) / 2 ) ) |
23 |
11 12 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( sin ‘ 𝐴 ) · ( cos ‘ ( 𝑛 · 𝐴 ) ) ) = ( ( ( sin ‘ ( 𝐴 + ( 𝑛 · 𝐴 ) ) ) + ( sin ‘ ( 𝐴 − ( 𝑛 · 𝐴 ) ) ) ) / 2 ) ) |
24 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ℂ ) |
25 |
9 24 11
|
adddird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑛 + 1 ) · 𝐴 ) = ( ( 𝑛 · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
26 |
24 11
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 1 · 𝐴 ) ∈ ℂ ) |
27 |
12 26
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑛 · 𝐴 ) + ( 1 · 𝐴 ) ) = ( ( 1 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
28 |
10
|
mulid2d |
⊢ ( 𝜑 → ( 1 · 𝐴 ) = 𝐴 ) |
29 |
28
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) = ( 𝐴 + ( 𝑛 · 𝐴 ) ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) = ( 𝐴 + ( 𝑛 · 𝐴 ) ) ) |
31 |
25 27 30
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 + ( 𝑛 · 𝐴 ) ) = ( ( 𝑛 + 1 ) · 𝐴 ) ) |
32 |
31
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( sin ‘ ( 𝐴 + ( 𝑛 · 𝐴 ) ) ) = ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) ) |
33 |
12 11
|
negsubdi2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → - ( ( 𝑛 · 𝐴 ) − 𝐴 ) = ( 𝐴 − ( 𝑛 · 𝐴 ) ) ) |
34 |
33
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 − ( 𝑛 · 𝐴 ) ) = - ( ( 𝑛 · 𝐴 ) − 𝐴 ) ) |
35 |
34
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( sin ‘ ( 𝐴 − ( 𝑛 · 𝐴 ) ) ) = ( sin ‘ - ( ( 𝑛 · 𝐴 ) − 𝐴 ) ) ) |
36 |
12 11
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑛 · 𝐴 ) − 𝐴 ) ∈ ℂ ) |
37 |
|
sinneg |
⊢ ( ( ( 𝑛 · 𝐴 ) − 𝐴 ) ∈ ℂ → ( sin ‘ - ( ( 𝑛 · 𝐴 ) − 𝐴 ) ) = - ( sin ‘ ( ( 𝑛 · 𝐴 ) − 𝐴 ) ) ) |
38 |
36 37
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( sin ‘ - ( ( 𝑛 · 𝐴 ) − 𝐴 ) ) = - ( sin ‘ ( ( 𝑛 · 𝐴 ) − 𝐴 ) ) ) |
39 |
35 38
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( sin ‘ ( 𝐴 − ( 𝑛 · 𝐴 ) ) ) = - ( sin ‘ ( ( 𝑛 · 𝐴 ) − 𝐴 ) ) ) |
40 |
32 39
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( sin ‘ ( 𝐴 + ( 𝑛 · 𝐴 ) ) ) + ( sin ‘ ( 𝐴 − ( 𝑛 · 𝐴 ) ) ) ) = ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) + - ( sin ‘ ( ( 𝑛 · 𝐴 ) − 𝐴 ) ) ) ) |
41 |
11 12
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 + ( 𝑛 · 𝐴 ) ) ∈ ℂ ) |
42 |
41
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( sin ‘ ( 𝐴 + ( 𝑛 · 𝐴 ) ) ) ∈ ℂ ) |
43 |
32 42
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) ∈ ℂ ) |
44 |
36
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( sin ‘ ( ( 𝑛 · 𝐴 ) − 𝐴 ) ) ∈ ℂ ) |
45 |
43 44
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) + - ( sin ‘ ( ( 𝑛 · 𝐴 ) − 𝐴 ) ) ) = ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 · 𝐴 ) − 𝐴 ) ) ) ) |
46 |
9 11
|
mulsubfacd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑛 · 𝐴 ) − 𝐴 ) = ( ( 𝑛 − 1 ) · 𝐴 ) ) |
47 |
46
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( sin ‘ ( ( 𝑛 · 𝐴 ) − 𝐴 ) ) = ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) |
48 |
47
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 · 𝐴 ) − 𝐴 ) ) ) = ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) |
49 |
40 45 48
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( sin ‘ ( 𝐴 + ( 𝑛 · 𝐴 ) ) ) + ( sin ‘ ( 𝐴 − ( 𝑛 · 𝐴 ) ) ) ) = ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) |
50 |
49
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( sin ‘ ( 𝐴 + ( 𝑛 · 𝐴 ) ) ) + ( sin ‘ ( 𝐴 − ( 𝑛 · 𝐴 ) ) ) ) / 2 ) = ( ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) / 2 ) ) |
51 |
21 23 50
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( cos ‘ ( 𝑛 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) = ( ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) / 2 ) ) |
52 |
51
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( cos ‘ ( 𝑛 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) / 2 ) ) |
53 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
54 |
|
peano2cnm |
⊢ ( 𝑛 ∈ ℂ → ( 𝑛 − 1 ) ∈ ℂ ) |
55 |
9 54
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑛 − 1 ) ∈ ℂ ) |
56 |
55 11
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑛 − 1 ) · 𝐴 ) ∈ ℂ ) |
57 |
56
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ∈ ℂ ) |
58 |
43 57
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ∈ ℂ ) |
59 |
|
2ne0 |
⊢ 2 ≠ 0 |
60 |
59
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
61 |
6 53 58 60
|
fsumdivc |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) / 2 ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) / 2 ) ) |
62 |
6 58
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ∈ ℂ ) |
63 |
62 53 60
|
divrec2d |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) / 2 ) = ( ( 1 / 2 ) · Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) ) |
64 |
61 63
|
eqtr3d |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) / 2 ) = ( ( 1 / 2 ) · Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) ) |
65 |
19 52 64
|
3eqtrd |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) = ( ( 1 / 2 ) · Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) ) |
66 |
65
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) · ( sin ‘ 𝐴 ) ) + ( Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) = ( ( ( 1 / 2 ) · ( sin ‘ 𝐴 ) ) + ( ( 1 / 2 ) · Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) ) ) |
67 |
5 14 16
|
adddird |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) · ( sin ‘ 𝐴 ) ) = ( ( ( 1 / 2 ) · ( sin ‘ 𝐴 ) ) + ( Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
68 |
5 16 62
|
adddid |
⊢ ( 𝜑 → ( ( 1 / 2 ) · ( ( sin ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) ) = ( ( ( 1 / 2 ) · ( sin ‘ 𝐴 ) ) + ( ( 1 / 2 ) · Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) ) ) |
69 |
66 67 68
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) · ( sin ‘ 𝐴 ) ) = ( ( 1 / 2 ) · ( ( sin ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) ) ) |
70 |
69
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) · ( sin ‘ 𝐴 ) ) / ( sin ‘ 𝐴 ) ) = ( ( ( 1 / 2 ) · ( ( sin ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) ) / ( sin ‘ 𝐴 ) ) ) |
71 |
12
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( sin ‘ ( 𝑛 · 𝐴 ) ) ∈ ℂ ) |
72 |
43 71 57
|
npncand |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 𝑛 · 𝐴 ) ) ) + ( ( sin ‘ ( 𝑛 · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) = ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) |
73 |
72
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) = ( ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 𝑛 · 𝐴 ) ) ) + ( ( sin ‘ ( 𝑛 · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) ) |
74 |
73
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 𝑛 · 𝐴 ) ) ) + ( ( sin ‘ ( 𝑛 · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) ) |
75 |
43 71
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 𝑛 · 𝐴 ) ) ) ∈ ℂ ) |
76 |
71 57
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( sin ‘ ( 𝑛 · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ∈ ℂ ) |
77 |
6 75 76
|
fsumadd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 𝑛 · 𝐴 ) ) ) + ( ( sin ‘ ( 𝑛 · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 𝑛 · 𝐴 ) ) ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( 𝑛 · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) ) |
78 |
|
fvoveq1 |
⊢ ( 𝑗 = 𝑛 → ( sin ‘ ( 𝑗 · 𝐴 ) ) = ( sin ‘ ( 𝑛 · 𝐴 ) ) ) |
79 |
|
fvoveq1 |
⊢ ( 𝑗 = ( 𝑛 + 1 ) → ( sin ‘ ( 𝑗 · 𝐴 ) ) = ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) ) |
80 |
|
fvoveq1 |
⊢ ( 𝑗 = 1 → ( sin ‘ ( 𝑗 · 𝐴 ) ) = ( sin ‘ ( 1 · 𝐴 ) ) ) |
81 |
|
fvoveq1 |
⊢ ( 𝑗 = ( 𝑁 + 1 ) → ( sin ‘ ( 𝑗 · 𝐴 ) ) = ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ) |
82 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
83 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
84 |
3 83
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
85 |
|
peano2uz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
86 |
84 85
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
87 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) → 𝑗 ∈ ℤ ) |
88 |
87
|
zcnd |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) → 𝑗 ∈ ℂ ) |
89 |
88
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑗 ∈ ℂ ) |
90 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → 𝐴 ∈ ℂ ) |
91 |
89 90
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑗 · 𝐴 ) ∈ ℂ ) |
92 |
91
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( sin ‘ ( 𝑗 · 𝐴 ) ) ∈ ℂ ) |
93 |
78 79 80 81 82 86 92
|
telfsum2 |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 𝑛 · 𝐴 ) ) ) = ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 1 · 𝐴 ) ) ) ) |
94 |
|
1cnd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 1 ∈ ℂ ) |
95 |
8 94
|
pncand |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
96 |
95
|
eqcomd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 = ( ( 𝑛 + 1 ) − 1 ) ) |
97 |
96
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝑛 = ( ( 𝑛 + 1 ) − 1 ) ) |
98 |
97
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( sin ‘ ( 𝑛 · 𝐴 ) ) = ( sin ‘ ( ( ( 𝑛 + 1 ) − 1 ) · 𝐴 ) ) ) |
99 |
98
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( sin ‘ ( 𝑛 · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) = ( ( sin ‘ ( ( ( 𝑛 + 1 ) − 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) |
100 |
99
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( 𝑛 · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( ( 𝑛 + 1 ) − 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) |
101 |
|
oveq1 |
⊢ ( 𝑗 = 𝑛 → ( 𝑗 − 1 ) = ( 𝑛 − 1 ) ) |
102 |
101
|
fvoveq1d |
⊢ ( 𝑗 = 𝑛 → ( sin ‘ ( ( 𝑗 − 1 ) · 𝐴 ) ) = ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) |
103 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑛 + 1 ) → ( 𝑗 − 1 ) = ( ( 𝑛 + 1 ) − 1 ) ) |
104 |
103
|
fvoveq1d |
⊢ ( 𝑗 = ( 𝑛 + 1 ) → ( sin ‘ ( ( 𝑗 − 1 ) · 𝐴 ) ) = ( sin ‘ ( ( ( 𝑛 + 1 ) − 1 ) · 𝐴 ) ) ) |
105 |
|
oveq1 |
⊢ ( 𝑗 = 1 → ( 𝑗 − 1 ) = ( 1 − 1 ) ) |
106 |
105
|
fvoveq1d |
⊢ ( 𝑗 = 1 → ( sin ‘ ( ( 𝑗 − 1 ) · 𝐴 ) ) = ( sin ‘ ( ( 1 − 1 ) · 𝐴 ) ) ) |
107 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑁 + 1 ) → ( 𝑗 − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
108 |
107
|
fvoveq1d |
⊢ ( 𝑗 = ( 𝑁 + 1 ) → ( sin ‘ ( ( 𝑗 − 1 ) · 𝐴 ) ) = ( sin ‘ ( ( ( 𝑁 + 1 ) − 1 ) · 𝐴 ) ) ) |
109 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → 1 ∈ ℂ ) |
110 |
89 109
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑗 − 1 ) ∈ ℂ ) |
111 |
110 90
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑗 − 1 ) · 𝐴 ) ∈ ℂ ) |
112 |
111
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( sin ‘ ( ( 𝑗 − 1 ) · 𝐴 ) ) ∈ ℂ ) |
113 |
102 104 106 108 82 86 112
|
telfsum2 |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( ( 𝑛 + 1 ) − 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) = ( ( sin ‘ ( ( ( 𝑁 + 1 ) − 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 1 − 1 ) · 𝐴 ) ) ) ) |
114 |
3
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
115 |
114
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
116 |
115 4
|
pncand |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
117 |
116
|
fvoveq1d |
⊢ ( 𝜑 → ( sin ‘ ( ( ( 𝑁 + 1 ) − 1 ) · 𝐴 ) ) = ( sin ‘ ( 𝑁 · 𝐴 ) ) ) |
118 |
4
|
subidd |
⊢ ( 𝜑 → ( 1 − 1 ) = 0 ) |
119 |
118
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 − 1 ) · 𝐴 ) = ( 0 · 𝐴 ) ) |
120 |
10
|
mul02d |
⊢ ( 𝜑 → ( 0 · 𝐴 ) = 0 ) |
121 |
119 120
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 − 1 ) · 𝐴 ) = 0 ) |
122 |
121
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( ( 1 − 1 ) · 𝐴 ) ) = ( sin ‘ 0 ) ) |
123 |
|
sin0 |
⊢ ( sin ‘ 0 ) = 0 |
124 |
123
|
a1i |
⊢ ( 𝜑 → ( sin ‘ 0 ) = 0 ) |
125 |
122 124
|
eqtrd |
⊢ ( 𝜑 → ( sin ‘ ( ( 1 − 1 ) · 𝐴 ) ) = 0 ) |
126 |
117 125
|
oveq12d |
⊢ ( 𝜑 → ( ( sin ‘ ( ( ( 𝑁 + 1 ) − 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 1 − 1 ) · 𝐴 ) ) ) = ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) |
127 |
100 113 126
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( 𝑛 · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) = ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) |
128 |
93 127
|
oveq12d |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 𝑛 · 𝐴 ) ) ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( 𝑛 · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) = ( ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 1 · 𝐴 ) ) ) + ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) ) |
129 |
74 77 128
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) = ( ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 1 · 𝐴 ) ) ) + ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) ) |
130 |
129
|
oveq2d |
⊢ ( 𝜑 → ( ( sin ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) = ( ( sin ‘ 𝐴 ) + ( ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 1 · 𝐴 ) ) ) + ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) ) ) |
131 |
28
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( 1 · 𝐴 ) ) = ( sin ‘ 𝐴 ) ) |
132 |
131
|
oveq2d |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 1 · 𝐴 ) ) ) = ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ 𝐴 ) ) ) |
133 |
132
|
oveq1d |
⊢ ( 𝜑 → ( ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 1 · 𝐴 ) ) ) + ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) = ( ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ 𝐴 ) ) + ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) ) |
134 |
133
|
oveq2d |
⊢ ( 𝜑 → ( ( sin ‘ 𝐴 ) + ( ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 1 · 𝐴 ) ) ) + ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) ) = ( ( sin ‘ 𝐴 ) + ( ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ 𝐴 ) ) + ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) ) ) |
135 |
115 4
|
addcld |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℂ ) |
136 |
135 10
|
mulcld |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · 𝐴 ) ∈ ℂ ) |
137 |
136
|
sincld |
⊢ ( 𝜑 → ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ∈ ℂ ) |
138 |
137 16
|
subcld |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
139 |
115 10
|
mulcld |
⊢ ( 𝜑 → ( 𝑁 · 𝐴 ) ∈ ℂ ) |
140 |
139
|
sincld |
⊢ ( 𝜑 → ( sin ‘ ( 𝑁 · 𝐴 ) ) ∈ ℂ ) |
141 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
142 |
140 141
|
subcld |
⊢ ( 𝜑 → ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ∈ ℂ ) |
143 |
16 138 142
|
addassd |
⊢ ( 𝜑 → ( ( ( sin ‘ 𝐴 ) + ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ 𝐴 ) ) ) + ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) = ( ( sin ‘ 𝐴 ) + ( ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ 𝐴 ) ) + ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) ) ) |
144 |
143
|
eqcomd |
⊢ ( 𝜑 → ( ( sin ‘ 𝐴 ) + ( ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ 𝐴 ) ) + ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) ) = ( ( ( sin ‘ 𝐴 ) + ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ 𝐴 ) ) ) + ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) ) |
145 |
16 137
|
pncan3d |
⊢ ( 𝜑 → ( ( sin ‘ 𝐴 ) + ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ 𝐴 ) ) ) = ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ) |
146 |
140
|
subid1d |
⊢ ( 𝜑 → ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) = ( sin ‘ ( 𝑁 · 𝐴 ) ) ) |
147 |
145 146
|
oveq12d |
⊢ ( 𝜑 → ( ( ( sin ‘ 𝐴 ) + ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ 𝐴 ) ) ) + ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) = ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) + ( sin ‘ ( 𝑁 · 𝐴 ) ) ) ) |
148 |
137 140
|
addcomd |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) + ( sin ‘ ( 𝑁 · 𝐴 ) ) ) = ( ( sin ‘ ( 𝑁 · 𝐴 ) ) + ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ) ) |
149 |
147 148
|
eqtrd |
⊢ ( 𝜑 → ( ( ( sin ‘ 𝐴 ) + ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ 𝐴 ) ) ) + ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) = ( ( sin ‘ ( 𝑁 · 𝐴 ) ) + ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ) ) |
150 |
134 144 149
|
3eqtrd |
⊢ ( 𝜑 → ( ( sin ‘ 𝐴 ) + ( ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) − ( sin ‘ ( 1 · 𝐴 ) ) ) + ( ( sin ‘ ( 𝑁 · 𝐴 ) ) − 0 ) ) ) = ( ( sin ‘ ( 𝑁 · 𝐴 ) ) + ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ) ) |
151 |
130 150
|
eqtrd |
⊢ ( 𝜑 → ( ( sin ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) = ( ( sin ‘ ( 𝑁 · 𝐴 ) ) + ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ) ) |
152 |
151
|
oveq2d |
⊢ ( 𝜑 → ( ( 1 / 2 ) · ( ( sin ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) ) = ( ( 1 / 2 ) · ( ( sin ‘ ( 𝑁 · 𝐴 ) ) + ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ) ) ) |
153 |
152
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) · ( ( sin ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( sin ‘ ( ( 𝑛 + 1 ) · 𝐴 ) ) − ( sin ‘ ( ( 𝑛 − 1 ) · 𝐴 ) ) ) ) ) / ( sin ‘ 𝐴 ) ) = ( ( ( 1 / 2 ) · ( ( sin ‘ ( 𝑁 · 𝐴 ) ) + ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ) ) / ( sin ‘ 𝐴 ) ) ) |
154 |
18 70 153
|
3eqtrd |
⊢ ( 𝜑 → ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) = ( ( ( 1 / 2 ) · ( ( sin ‘ ( 𝑁 · 𝐴 ) ) + ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ) ) / ( sin ‘ 𝐴 ) ) ) |
155 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
156 |
155
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ ) |
157 |
114 156
|
readdcld |
⊢ ( 𝜑 → ( 𝑁 + ( 1 / 2 ) ) ∈ ℝ ) |
158 |
157 1
|
remulcld |
⊢ ( 𝜑 → ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ∈ ℝ ) |
159 |
158
|
recnd |
⊢ ( 𝜑 → ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ∈ ℂ ) |
160 |
5 10
|
mulcld |
⊢ ( 𝜑 → ( ( 1 / 2 ) · 𝐴 ) ∈ ℂ ) |
161 |
|
sinmulcos |
⊢ ( ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ∈ ℂ ∧ ( ( 1 / 2 ) · 𝐴 ) ∈ ℂ ) → ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) = ( ( ( sin ‘ ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) ) + ( sin ‘ ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) − ( ( 1 / 2 ) · 𝐴 ) ) ) ) / 2 ) ) |
162 |
159 160 161
|
syl2anc |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) = ( ( ( sin ‘ ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) ) + ( sin ‘ ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) − ( ( 1 / 2 ) · 𝐴 ) ) ) ) / 2 ) ) |
163 |
115 5 10
|
adddird |
⊢ ( 𝜑 → ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) = ( ( 𝑁 · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) ) |
164 |
163
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) = ( ( ( 𝑁 · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) + ( ( 1 / 2 ) · 𝐴 ) ) ) |
165 |
139 160 160
|
addassd |
⊢ ( 𝜑 → ( ( ( 𝑁 · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) + ( ( 1 / 2 ) · 𝐴 ) ) = ( ( 𝑁 · 𝐴 ) + ( ( ( 1 / 2 ) · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) ) ) |
166 |
5 5 10
|
adddird |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + ( 1 / 2 ) ) · 𝐴 ) = ( ( ( 1 / 2 ) · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) ) |
167 |
4
|
2halvesd |
⊢ ( 𝜑 → ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
168 |
167
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + ( 1 / 2 ) ) · 𝐴 ) = ( 1 · 𝐴 ) ) |
169 |
166 168
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) = ( 1 · 𝐴 ) ) |
170 |
169
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 · 𝐴 ) + ( ( ( 1 / 2 ) · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) ) = ( ( 𝑁 · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
171 |
115 4 10
|
adddird |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · 𝐴 ) = ( ( 𝑁 · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
172 |
170 171
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑁 · 𝐴 ) + ( ( ( 1 / 2 ) · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) ) = ( ( 𝑁 + 1 ) · 𝐴 ) ) |
173 |
164 165 172
|
3eqtrrd |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · 𝐴 ) = ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) ) |
174 |
173
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) = ( sin ‘ ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) ) ) |
175 |
163
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) − ( ( 1 / 2 ) · 𝐴 ) ) = ( ( ( 𝑁 · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) − ( ( 1 / 2 ) · 𝐴 ) ) ) |
176 |
139 160
|
pncand |
⊢ ( 𝜑 → ( ( ( 𝑁 · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) − ( ( 1 / 2 ) · 𝐴 ) ) = ( 𝑁 · 𝐴 ) ) |
177 |
175 176
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑁 · 𝐴 ) = ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) − ( ( 1 / 2 ) · 𝐴 ) ) ) |
178 |
177
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( 𝑁 · 𝐴 ) ) = ( sin ‘ ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) − ( ( 1 / 2 ) · 𝐴 ) ) ) ) |
179 |
174 178
|
oveq12d |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) + ( sin ‘ ( 𝑁 · 𝐴 ) ) ) = ( ( sin ‘ ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) ) + ( sin ‘ ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) − ( ( 1 / 2 ) · 𝐴 ) ) ) ) ) |
180 |
179
|
oveq1d |
⊢ ( 𝜑 → ( ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) + ( sin ‘ ( 𝑁 · 𝐴 ) ) ) / 2 ) = ( ( ( sin ‘ ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) + ( ( 1 / 2 ) · 𝐴 ) ) ) + ( sin ‘ ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) − ( ( 1 / 2 ) · 𝐴 ) ) ) ) / 2 ) ) |
181 |
162 180
|
eqtr4d |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) = ( ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) + ( sin ‘ ( 𝑁 · 𝐴 ) ) ) / 2 ) ) |
182 |
148
|
oveq1d |
⊢ ( 𝜑 → ( ( ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) + ( sin ‘ ( 𝑁 · 𝐴 ) ) ) / 2 ) = ( ( ( sin ‘ ( 𝑁 · 𝐴 ) ) + ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ) / 2 ) ) |
183 |
140 137
|
addcld |
⊢ ( 𝜑 → ( ( sin ‘ ( 𝑁 · 𝐴 ) ) + ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ) ∈ ℂ ) |
184 |
183 53 60
|
divrec2d |
⊢ ( 𝜑 → ( ( ( sin ‘ ( 𝑁 · 𝐴 ) ) + ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ) / 2 ) = ( ( 1 / 2 ) · ( ( sin ‘ ( 𝑁 · 𝐴 ) ) + ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ) ) ) |
185 |
181 182 184
|
3eqtrrd |
⊢ ( 𝜑 → ( ( 1 / 2 ) · ( ( sin ‘ ( 𝑁 · 𝐴 ) ) + ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ) ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) ) |
186 |
185
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) · ( ( sin ‘ ( 𝑁 · 𝐴 ) ) + ( sin ‘ ( ( 𝑁 + 1 ) · 𝐴 ) ) ) ) / ( sin ‘ 𝐴 ) ) = ( ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) / ( sin ‘ 𝐴 ) ) ) |
187 |
10 53 60
|
divcan2d |
⊢ ( 𝜑 → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
188 |
187
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( 2 · ( 𝐴 / 2 ) ) ) |
189 |
188
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ 𝐴 ) = ( sin ‘ ( 2 · ( 𝐴 / 2 ) ) ) ) |
190 |
10
|
halfcld |
⊢ ( 𝜑 → ( 𝐴 / 2 ) ∈ ℂ ) |
191 |
|
sin2t |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( sin ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
192 |
190 191
|
syl |
⊢ ( 𝜑 → ( sin ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
193 |
189 192
|
eqtrd |
⊢ ( 𝜑 → ( sin ‘ 𝐴 ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
194 |
193
|
oveq2d |
⊢ ( 𝜑 → ( ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) / ( sin ‘ 𝐴 ) ) = ( ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) / ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
195 |
190
|
sincld |
⊢ ( 𝜑 → ( sin ‘ ( 𝐴 / 2 ) ) ∈ ℂ ) |
196 |
190
|
coscld |
⊢ ( 𝜑 → ( cos ‘ ( 𝐴 / 2 ) ) ∈ ℂ ) |
197 |
53 195 196
|
mulassd |
⊢ ( 𝜑 → ( ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) = ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) |
198 |
10 53 60
|
divrec2d |
⊢ ( 𝜑 → ( 𝐴 / 2 ) = ( ( 1 / 2 ) · 𝐴 ) ) |
199 |
198
|
fveq2d |
⊢ ( 𝜑 → ( cos ‘ ( 𝐴 / 2 ) ) = ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) |
200 |
199
|
oveq2d |
⊢ ( 𝜑 → ( ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) = ( ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) ) |
201 |
197 200
|
eqtr3d |
⊢ ( 𝜑 → ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) = ( ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) ) |
202 |
201
|
oveq2d |
⊢ ( 𝜑 → ( ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) / ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ) = ( ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) / ( ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) ) ) |
203 |
159
|
sincld |
⊢ ( 𝜑 → ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) ∈ ℂ ) |
204 |
53 195
|
mulcld |
⊢ ( 𝜑 → ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ∈ ℂ ) |
205 |
160
|
coscld |
⊢ ( 𝜑 → ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ∈ ℂ ) |
206 |
195 196
|
mulcld |
⊢ ( 𝜑 → ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ∈ ℂ ) |
207 |
193 2
|
eqnetrrd |
⊢ ( 𝜑 → ( 2 · ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ) ≠ 0 ) |
208 |
53 206 207
|
mulne0bbd |
⊢ ( 𝜑 → ( ( sin ‘ ( 𝐴 / 2 ) ) · ( cos ‘ ( 𝐴 / 2 ) ) ) ≠ 0 ) |
209 |
195 196 208
|
mulne0bad |
⊢ ( 𝜑 → ( sin ‘ ( 𝐴 / 2 ) ) ≠ 0 ) |
210 |
53 195 60 209
|
mulne0d |
⊢ ( 𝜑 → ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ≠ 0 ) |
211 |
195 196 208
|
mulne0bbd |
⊢ ( 𝜑 → ( cos ‘ ( 𝐴 / 2 ) ) ≠ 0 ) |
212 |
199 211
|
eqnetrrd |
⊢ ( 𝜑 → ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ≠ 0 ) |
213 |
203 204 205 210 212
|
divcan5rd |
⊢ ( 𝜑 → ( ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) / ( ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
214 |
194 202 213
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝐴 ) ) ) / ( sin ‘ 𝐴 ) ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
215 |
154 186 214
|
3eqtrd |
⊢ ( 𝜑 → ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
216 |
215
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) / π ) ) |
217 |
|
picn |
⊢ π ∈ ℂ |
218 |
217
|
a1i |
⊢ ( 𝜑 → π ∈ ℂ ) |
219 |
|
pire |
⊢ π ∈ ℝ |
220 |
|
pipos |
⊢ 0 < π |
221 |
219 220
|
gt0ne0ii |
⊢ π ≠ 0 |
222 |
221
|
a1i |
⊢ ( 𝜑 → π ≠ 0 ) |
223 |
203 204 218 210 222
|
divdiv32d |
⊢ ( 𝜑 → ( ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) / π ) = ( ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / π ) / ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
224 |
203 218 204 222 210
|
divdiv1d |
⊢ ( 𝜑 → ( ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / π ) / ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( π · ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
225 |
218 53 195
|
mulassd |
⊢ ( 𝜑 → ( ( π · 2 ) · ( sin ‘ ( 𝐴 / 2 ) ) ) = ( π · ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
226 |
218 53
|
mulcomd |
⊢ ( 𝜑 → ( π · 2 ) = ( 2 · π ) ) |
227 |
226
|
oveq1d |
⊢ ( 𝜑 → ( ( π · 2 ) · ( sin ‘ ( 𝐴 / 2 ) ) ) = ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) |
228 |
225 227
|
eqtr3d |
⊢ ( 𝜑 → ( π · ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) = ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) |
229 |
228
|
oveq2d |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( π · ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
230 |
224 229
|
eqtrd |
⊢ ( 𝜑 → ( ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / π ) / ( 2 · ( sin ‘ ( 𝐴 / 2 ) ) ) ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
231 |
216 223 230
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |