Step |
Hyp |
Ref |
Expression |
1 |
|
dirkertrigeqlem3.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
dirkertrigeqlem3.k |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
3 |
|
dirkertrigeqlem3.a |
⊢ 𝐴 = ( ( ( 2 · 𝐾 ) + 1 ) · π ) |
4 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝐴 = ( ( ( 2 · 𝐾 ) + 1 ) · π ) ) |
5 |
4
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑛 · 𝐴 ) = ( 𝑛 · ( ( ( 2 · 𝐾 ) + 1 ) · π ) ) ) |
6 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℤ ) |
7 |
6
|
zcnd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℂ ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝑛 ∈ ℂ ) |
9 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 2 ∈ ℂ ) |
10 |
2
|
zcnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝐾 ∈ ℂ ) |
12 |
9 11
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 2 · 𝐾 ) ∈ ℂ ) |
13 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ℂ ) |
14 |
12 13
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 2 · 𝐾 ) + 1 ) ∈ ℂ ) |
15 |
|
picn |
⊢ π ∈ ℂ |
16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → π ∈ ℂ ) |
17 |
14 16
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 2 · 𝐾 ) + 1 ) · π ) ∈ ℂ ) |
18 |
8 17
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑛 · ( ( ( 2 · 𝐾 ) + 1 ) · π ) ) = ( ( ( ( 2 · 𝐾 ) + 1 ) · π ) · 𝑛 ) ) |
19 |
14 16 8
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 2 · 𝐾 ) + 1 ) · π ) · 𝑛 ) = ( ( ( 2 · 𝐾 ) + 1 ) · ( π · 𝑛 ) ) ) |
20 |
16 8
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( π · 𝑛 ) ∈ ℂ ) |
21 |
12 13 20
|
adddird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 2 · 𝐾 ) + 1 ) · ( π · 𝑛 ) ) = ( ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) + ( 1 · ( π · 𝑛 ) ) ) ) |
22 |
12 20
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) ∈ ℂ ) |
23 |
13 20
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 1 · ( π · 𝑛 ) ) ∈ ℂ ) |
24 |
22 23
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) + ( 1 · ( π · 𝑛 ) ) ) = ( ( 1 · ( π · 𝑛 ) ) + ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) ) ) |
25 |
15
|
a1i |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → π ∈ ℂ ) |
26 |
25 7
|
mulcld |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( π · 𝑛 ) ∈ ℂ ) |
27 |
26
|
mulid2d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( 1 · ( π · 𝑛 ) ) = ( π · 𝑛 ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 1 · ( π · 𝑛 ) ) = ( π · 𝑛 ) ) |
29 |
9 11 16 8
|
mul4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) = ( ( 2 · π ) · ( 𝐾 · 𝑛 ) ) ) |
30 |
9 16
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 2 · π ) ∈ ℂ ) |
31 |
11 8
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐾 · 𝑛 ) ∈ ℂ ) |
32 |
30 31
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 2 · π ) · ( 𝐾 · 𝑛 ) ) = ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) |
33 |
29 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) = ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) |
34 |
28 33
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 · ( π · 𝑛 ) ) + ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) ) = ( ( π · 𝑛 ) + ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) ) |
35 |
24 34
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 2 · 𝐾 ) · ( π · 𝑛 ) ) + ( 1 · ( π · 𝑛 ) ) ) = ( ( π · 𝑛 ) + ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) ) |
36 |
19 21 35
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 2 · 𝐾 ) + 1 ) · π ) · 𝑛 ) = ( ( π · 𝑛 ) + ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) ) |
37 |
5 18 36
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑛 · 𝐴 ) = ( ( π · 𝑛 ) + ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) ) |
38 |
37
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( cos ‘ ( 𝑛 · 𝐴 ) ) = ( cos ‘ ( ( π · 𝑛 ) + ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) ) ) |
39 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝐾 ∈ ℤ ) |
40 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝑛 ∈ ℤ ) |
41 |
39 40
|
zmulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐾 · 𝑛 ) ∈ ℤ ) |
42 |
|
cosper |
⊢ ( ( ( π · 𝑛 ) ∈ ℂ ∧ ( 𝐾 · 𝑛 ) ∈ ℤ ) → ( cos ‘ ( ( π · 𝑛 ) + ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) ) = ( cos ‘ ( π · 𝑛 ) ) ) |
43 |
20 41 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( cos ‘ ( ( π · 𝑛 ) + ( ( 𝐾 · 𝑛 ) · ( 2 · π ) ) ) ) = ( cos ‘ ( π · 𝑛 ) ) ) |
44 |
38 43
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( cos ‘ ( 𝑛 · 𝐴 ) ) = ( cos ‘ ( π · 𝑛 ) ) ) |
45 |
44
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) |
46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) = ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) ) |
47 |
46
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) / π ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) / π ) ) |
49 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
50 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
51 |
|
2ne0 |
⊢ 2 ≠ 0 |
52 |
51
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
53 |
49 50 52
|
divcan2d |
⊢ ( 𝜑 → ( 2 · ( 𝑁 / 2 ) ) = 𝑁 ) |
54 |
53
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = ( 2 · ( 𝑁 / 2 ) ) ) |
55 |
54
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ) |
56 |
55
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( π · 𝑛 ) ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( π · 𝑛 ) ) ) |
58 |
15
|
a1i |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) → π ∈ ℂ ) |
59 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) → 𝑛 ∈ ℤ ) |
60 |
59
|
zcnd |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) → 𝑛 ∈ ℂ ) |
61 |
58 60
|
mulcomd |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) → ( π · 𝑛 ) = ( 𝑛 · π ) ) |
62 |
61
|
fveq2d |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) → ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ ( 𝑛 · π ) ) ) |
63 |
62
|
rgen |
⊢ ∀ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ ( 𝑛 · π ) ) |
64 |
63
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ∀ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ ( 𝑛 · π ) ) ) |
65 |
64
|
sumeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → Σ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( π · 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( 𝑛 · π ) ) ) |
66 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( 𝑁 mod 2 ) = 0 ) |
67 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → 𝑁 ∈ ℝ ) |
69 |
|
2rp |
⊢ 2 ∈ ℝ+ |
70 |
|
mod0 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ( 𝑁 mod 2 ) = 0 ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) |
71 |
68 69 70
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( 𝑁 mod 2 ) = 0 ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) |
72 |
66 71
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( 𝑁 / 2 ) ∈ ℤ ) |
73 |
|
2re |
⊢ 2 ∈ ℝ |
74 |
73
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
75 |
1
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑁 ) |
76 |
|
2pos |
⊢ 0 < 2 |
77 |
76
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
78 |
67 74 75 77
|
divgt0d |
⊢ ( 𝜑 → 0 < ( 𝑁 / 2 ) ) |
79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → 0 < ( 𝑁 / 2 ) ) |
80 |
|
elnnz |
⊢ ( ( 𝑁 / 2 ) ∈ ℕ ↔ ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 < ( 𝑁 / 2 ) ) ) |
81 |
72 79 80
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( 𝑁 / 2 ) ∈ ℕ ) |
82 |
|
dirkertrigeqlem1 |
⊢ ( ( 𝑁 / 2 ) ∈ ℕ → Σ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( 𝑛 · π ) ) = 0 ) |
83 |
81 82
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → Σ 𝑛 ∈ ( 1 ... ( 2 · ( 𝑁 / 2 ) ) ) ( cos ‘ ( 𝑛 · π ) ) = 0 ) |
84 |
57 65 83
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) = 0 ) |
85 |
84
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) = ( ( 1 / 2 ) + 0 ) ) |
86 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
87 |
86
|
addid1i |
⊢ ( ( 1 / 2 ) + 0 ) = ( 1 / 2 ) |
88 |
85 87
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) = ( 1 / 2 ) ) |
89 |
88
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) / π ) = ( ( 1 / 2 ) / π ) ) |
90 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
91 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
92 |
|
pire |
⊢ π ∈ ℝ |
93 |
|
pipos |
⊢ 0 < π |
94 |
92 93
|
gt0ne0ii |
⊢ π ≠ 0 |
95 |
15 94
|
pm3.2i |
⊢ ( π ∈ ℂ ∧ π ≠ 0 ) |
96 |
|
divdiv1 |
⊢ ( ( 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( π ∈ ℂ ∧ π ≠ 0 ) ) → ( ( 1 / 2 ) / π ) = ( 1 / ( 2 · π ) ) ) |
97 |
90 91 95 96
|
mp3an |
⊢ ( ( 1 / 2 ) / π ) = ( 1 / ( 2 · π ) ) |
98 |
97
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( 1 / 2 ) / π ) = ( 1 / ( 2 · π ) ) ) |
99 |
48 89 98
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( 1 / ( 2 · π ) ) ) |
100 |
3
|
oveq2i |
⊢ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) = ( ( 𝑁 + ( 1 / 2 ) ) · ( ( ( 2 · 𝐾 ) + 1 ) · π ) ) |
101 |
100
|
a1i |
⊢ ( 𝜑 → ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) = ( ( 𝑁 + ( 1 / 2 ) ) · ( ( ( 2 · 𝐾 ) + 1 ) · π ) ) ) |
102 |
86
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℂ ) |
103 |
49 102
|
addcld |
⊢ ( 𝜑 → ( 𝑁 + ( 1 / 2 ) ) ∈ ℂ ) |
104 |
50 10
|
mulcld |
⊢ ( 𝜑 → ( 2 · 𝐾 ) ∈ ℂ ) |
105 |
|
peano2cn |
⊢ ( ( 2 · 𝐾 ) ∈ ℂ → ( ( 2 · 𝐾 ) + 1 ) ∈ ℂ ) |
106 |
104 105
|
syl |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) + 1 ) ∈ ℂ ) |
107 |
15
|
a1i |
⊢ ( 𝜑 → π ∈ ℂ ) |
108 |
103 106 107
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝑁 + ( 1 / 2 ) ) · ( ( 2 · 𝐾 ) + 1 ) ) · π ) = ( ( 𝑁 + ( 1 / 2 ) ) · ( ( ( 2 · 𝐾 ) + 1 ) · π ) ) ) |
109 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
110 |
49 102 104 109
|
muladdd |
⊢ ( 𝜑 → ( ( 𝑁 + ( 1 / 2 ) ) · ( ( 2 · 𝐾 ) + 1 ) ) = ( ( ( 𝑁 · ( 2 · 𝐾 ) ) + ( 1 · ( 1 / 2 ) ) ) + ( ( 𝑁 · 1 ) + ( ( 2 · 𝐾 ) · ( 1 / 2 ) ) ) ) ) |
111 |
49 50 10
|
mul12d |
⊢ ( 𝜑 → ( 𝑁 · ( 2 · 𝐾 ) ) = ( 2 · ( 𝑁 · 𝐾 ) ) ) |
112 |
102
|
mulid2d |
⊢ ( 𝜑 → ( 1 · ( 1 / 2 ) ) = ( 1 / 2 ) ) |
113 |
111 112
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑁 · ( 2 · 𝐾 ) ) + ( 1 · ( 1 / 2 ) ) ) = ( ( 2 · ( 𝑁 · 𝐾 ) ) + ( 1 / 2 ) ) ) |
114 |
49
|
mulid1d |
⊢ ( 𝜑 → ( 𝑁 · 1 ) = 𝑁 ) |
115 |
50 10
|
mulcomd |
⊢ ( 𝜑 → ( 2 · 𝐾 ) = ( 𝐾 · 2 ) ) |
116 |
115
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) · ( 1 / 2 ) ) = ( ( 𝐾 · 2 ) · ( 1 / 2 ) ) ) |
117 |
10 50 102
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐾 · 2 ) · ( 1 / 2 ) ) = ( 𝐾 · ( 2 · ( 1 / 2 ) ) ) ) |
118 |
|
2cn |
⊢ 2 ∈ ℂ |
119 |
118 51
|
recidi |
⊢ ( 2 · ( 1 / 2 ) ) = 1 |
120 |
119
|
oveq2i |
⊢ ( 𝐾 · ( 2 · ( 1 / 2 ) ) ) = ( 𝐾 · 1 ) |
121 |
10
|
mulid1d |
⊢ ( 𝜑 → ( 𝐾 · 1 ) = 𝐾 ) |
122 |
120 121
|
syl5eq |
⊢ ( 𝜑 → ( 𝐾 · ( 2 · ( 1 / 2 ) ) ) = 𝐾 ) |
123 |
116 117 122
|
3eqtrd |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) · ( 1 / 2 ) ) = 𝐾 ) |
124 |
114 123
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑁 · 1 ) + ( ( 2 · 𝐾 ) · ( 1 / 2 ) ) ) = ( 𝑁 + 𝐾 ) ) |
125 |
113 124
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑁 · ( 2 · 𝐾 ) ) + ( 1 · ( 1 / 2 ) ) ) + ( ( 𝑁 · 1 ) + ( ( 2 · 𝐾 ) · ( 1 / 2 ) ) ) ) = ( ( ( 2 · ( 𝑁 · 𝐾 ) ) + ( 1 / 2 ) ) + ( 𝑁 + 𝐾 ) ) ) |
126 |
49 10
|
mulcld |
⊢ ( 𝜑 → ( 𝑁 · 𝐾 ) ∈ ℂ ) |
127 |
50 126
|
mulcld |
⊢ ( 𝜑 → ( 2 · ( 𝑁 · 𝐾 ) ) ∈ ℂ ) |
128 |
49 10
|
addcld |
⊢ ( 𝜑 → ( 𝑁 + 𝐾 ) ∈ ℂ ) |
129 |
127 102 128
|
addassd |
⊢ ( 𝜑 → ( ( ( 2 · ( 𝑁 · 𝐾 ) ) + ( 1 / 2 ) ) + ( 𝑁 + 𝐾 ) ) = ( ( 2 · ( 𝑁 · 𝐾 ) ) + ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) ) ) |
130 |
110 125 129
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 + ( 1 / 2 ) ) · ( ( 2 · 𝐾 ) + 1 ) ) = ( ( 2 · ( 𝑁 · 𝐾 ) ) + ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) ) ) |
131 |
102 128
|
addcld |
⊢ ( 𝜑 → ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) ∈ ℂ ) |
132 |
127 131
|
addcomd |
⊢ ( 𝜑 → ( ( 2 · ( 𝑁 · 𝐾 ) ) + ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) ) = ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) + ( 2 · ( 𝑁 · 𝐾 ) ) ) ) |
133 |
50 126
|
mulcomd |
⊢ ( 𝜑 → ( 2 · ( 𝑁 · 𝐾 ) ) = ( ( 𝑁 · 𝐾 ) · 2 ) ) |
134 |
133
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) + ( 2 · ( 𝑁 · 𝐾 ) ) ) = ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) + ( ( 𝑁 · 𝐾 ) · 2 ) ) ) |
135 |
130 132 134
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 + ( 1 / 2 ) ) · ( ( 2 · 𝐾 ) + 1 ) ) = ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) + ( ( 𝑁 · 𝐾 ) · 2 ) ) ) |
136 |
135
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑁 + ( 1 / 2 ) ) · ( ( 2 · 𝐾 ) + 1 ) ) · π ) = ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) + ( ( 𝑁 · 𝐾 ) · 2 ) ) · π ) ) |
137 |
126 50
|
mulcld |
⊢ ( 𝜑 → ( ( 𝑁 · 𝐾 ) · 2 ) ∈ ℂ ) |
138 |
131 137 107
|
adddird |
⊢ ( 𝜑 → ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) + ( ( 𝑁 · 𝐾 ) · 2 ) ) · π ) = ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( ( 𝑁 · 𝐾 ) · 2 ) · π ) ) ) |
139 |
126 50 107
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝑁 · 𝐾 ) · 2 ) · π ) = ( ( 𝑁 · 𝐾 ) · ( 2 · π ) ) ) |
140 |
139
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( ( 𝑁 · 𝐾 ) · 2 ) · π ) ) = ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( 𝑁 · 𝐾 ) · ( 2 · π ) ) ) ) |
141 |
136 138 140
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑁 + ( 1 / 2 ) ) · ( ( 2 · 𝐾 ) + 1 ) ) · π ) = ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( 𝑁 · 𝐾 ) · ( 2 · π ) ) ) ) |
142 |
101 108 141
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) = ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( 𝑁 · 𝐾 ) · ( 2 · π ) ) ) ) |
143 |
142
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) = ( sin ‘ ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( 𝑁 · 𝐾 ) · ( 2 · π ) ) ) ) ) |
144 |
131 107
|
mulcld |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) ∈ ℂ ) |
145 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
146 |
145 2
|
zmulcld |
⊢ ( 𝜑 → ( 𝑁 · 𝐾 ) ∈ ℤ ) |
147 |
|
sinper |
⊢ ( ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) ∈ ℂ ∧ ( 𝑁 · 𝐾 ) ∈ ℤ ) → ( sin ‘ ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( 𝑁 · 𝐾 ) · ( 2 · π ) ) ) ) = ( sin ‘ ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) ) ) |
148 |
144 146 147
|
syl2anc |
⊢ ( 𝜑 → ( sin ‘ ( ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) + ( ( 𝑁 · 𝐾 ) · ( 2 · π ) ) ) ) = ( sin ‘ ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) ) ) |
149 |
102 128
|
addcomd |
⊢ ( 𝜑 → ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) = ( ( 𝑁 + 𝐾 ) + ( 1 / 2 ) ) ) |
150 |
49 10 102
|
addassd |
⊢ ( 𝜑 → ( ( 𝑁 + 𝐾 ) + ( 1 / 2 ) ) = ( 𝑁 + ( 𝐾 + ( 1 / 2 ) ) ) ) |
151 |
10 102
|
addcld |
⊢ ( 𝜑 → ( 𝐾 + ( 1 / 2 ) ) ∈ ℂ ) |
152 |
49 151
|
addcomd |
⊢ ( 𝜑 → ( 𝑁 + ( 𝐾 + ( 1 / 2 ) ) ) = ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) ) |
153 |
149 150 152
|
3eqtrd |
⊢ ( 𝜑 → ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) = ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) ) |
154 |
153
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) = ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) |
155 |
154
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( ( ( 1 / 2 ) + ( 𝑁 + 𝐾 ) ) · π ) ) = ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) ) |
156 |
143 148 155
|
3eqtrd |
⊢ ( 𝜑 → ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) = ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) ) |
157 |
3
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( ( 2 · 𝐾 ) + 1 ) · π ) ) |
158 |
157
|
oveq1d |
⊢ ( 𝜑 → ( 𝐴 / 2 ) = ( ( ( ( 2 · 𝐾 ) + 1 ) · π ) / 2 ) ) |
159 |
106 107 50 52
|
div23d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝐾 ) + 1 ) · π ) / 2 ) = ( ( ( ( 2 · 𝐾 ) + 1 ) / 2 ) · π ) ) |
160 |
104 109 50 52
|
divdird |
⊢ ( 𝜑 → ( ( ( 2 · 𝐾 ) + 1 ) / 2 ) = ( ( ( 2 · 𝐾 ) / 2 ) + ( 1 / 2 ) ) ) |
161 |
10 50 52
|
divcan3d |
⊢ ( 𝜑 → ( ( 2 · 𝐾 ) / 2 ) = 𝐾 ) |
162 |
161
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 · 𝐾 ) / 2 ) + ( 1 / 2 ) ) = ( 𝐾 + ( 1 / 2 ) ) ) |
163 |
160 162
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝐾 ) + 1 ) / 2 ) = ( 𝐾 + ( 1 / 2 ) ) ) |
164 |
163
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝐾 ) + 1 ) / 2 ) · π ) = ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) |
165 |
158 159 164
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 / 2 ) = ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) |
166 |
165
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( 𝐴 / 2 ) ) = ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) |
167 |
166
|
oveq2d |
⊢ ( 𝜑 → ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) = ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) |
168 |
156 167
|
oveq12d |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) = ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) = ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
170 |
151 49 107
|
adddird |
⊢ ( 𝜑 → ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) = ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) |
171 |
170
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) = ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) ) |
172 |
171
|
oveq1d |
⊢ ( 𝜑 → ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
173 |
172
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) + 𝑁 ) · π ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
174 |
49
|
halfcld |
⊢ ( 𝜑 → ( 𝑁 / 2 ) ∈ ℂ ) |
175 |
50 174
|
mulcomd |
⊢ ( 𝜑 → ( 2 · ( 𝑁 / 2 ) ) = ( ( 𝑁 / 2 ) · 2 ) ) |
176 |
53 175
|
eqtr3d |
⊢ ( 𝜑 → 𝑁 = ( ( 𝑁 / 2 ) · 2 ) ) |
177 |
176
|
oveq1d |
⊢ ( 𝜑 → ( 𝑁 · π ) = ( ( ( 𝑁 / 2 ) · 2 ) · π ) ) |
178 |
174 50 107
|
mulassd |
⊢ ( 𝜑 → ( ( ( 𝑁 / 2 ) · 2 ) · π ) = ( ( 𝑁 / 2 ) · ( 2 · π ) ) ) |
179 |
177 178
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 · π ) = ( ( 𝑁 / 2 ) · ( 2 · π ) ) ) |
180 |
179
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) = ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( ( 𝑁 / 2 ) · ( 2 · π ) ) ) ) |
181 |
180
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) = ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( ( 𝑁 / 2 ) · ( 2 · π ) ) ) ) ) |
182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) = ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( ( 𝑁 / 2 ) · ( 2 · π ) ) ) ) ) |
183 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → 𝐾 ∈ ℂ ) |
184 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → 1 ∈ ℂ ) |
185 |
184
|
halfcld |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( 1 / 2 ) ∈ ℂ ) |
186 |
183 185
|
addcld |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( 𝐾 + ( 1 / 2 ) ) ∈ ℂ ) |
187 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → π ∈ ℂ ) |
188 |
186 187
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( 𝐾 + ( 1 / 2 ) ) · π ) ∈ ℂ ) |
189 |
|
sinper |
⊢ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) ∈ ℂ ∧ ( 𝑁 / 2 ) ∈ ℤ ) → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( ( 𝑁 / 2 ) · ( 2 · π ) ) ) ) = ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) |
190 |
188 72 189
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( ( 𝑁 / 2 ) · ( 2 · π ) ) ) ) = ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) |
191 |
182 190
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) = ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) |
192 |
50 107
|
mulcld |
⊢ ( 𝜑 → ( 2 · π ) ∈ ℂ ) |
193 |
151 107
|
mulcld |
⊢ ( 𝜑 → ( ( 𝐾 + ( 1 / 2 ) ) · π ) ∈ ℂ ) |
194 |
193
|
sincld |
⊢ ( 𝜑 → ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ∈ ℂ ) |
195 |
192 194
|
mulcomd |
⊢ ( 𝜑 → ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) = ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) |
196 |
195
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) = ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) |
197 |
191 196
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) ) |
198 |
94
|
a1i |
⊢ ( 𝜑 → π ≠ 0 ) |
199 |
151 107 198
|
divcan4d |
⊢ ( 𝜑 → ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) / π ) = ( 𝐾 + ( 1 / 2 ) ) ) |
200 |
2
|
zred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
201 |
69
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
202 |
201
|
rpreccld |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ+ ) |
203 |
200 202
|
ltaddrpd |
⊢ ( 𝜑 → 𝐾 < ( 𝐾 + ( 1 / 2 ) ) ) |
204 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
205 |
204
|
rehalfcld |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ ) |
206 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
207 |
206
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) < 1 ) |
208 |
205 204 200 207
|
ltadd2dd |
⊢ ( 𝜑 → ( 𝐾 + ( 1 / 2 ) ) < ( 𝐾 + 1 ) ) |
209 |
|
btwnnz |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝐾 < ( 𝐾 + ( 1 / 2 ) ) ∧ ( 𝐾 + ( 1 / 2 ) ) < ( 𝐾 + 1 ) ) → ¬ ( 𝐾 + ( 1 / 2 ) ) ∈ ℤ ) |
210 |
2 203 208 209
|
syl3anc |
⊢ ( 𝜑 → ¬ ( 𝐾 + ( 1 / 2 ) ) ∈ ℤ ) |
211 |
199 210
|
eqneltrd |
⊢ ( 𝜑 → ¬ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) / π ) ∈ ℤ ) |
212 |
|
sineq0 |
⊢ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) ∈ ℂ → ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) = 0 ↔ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) / π ) ∈ ℤ ) ) |
213 |
193 212
|
syl |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) = 0 ↔ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) / π ) ∈ ℤ ) ) |
214 |
211 213
|
mtbird |
⊢ ( 𝜑 → ¬ ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) = 0 ) |
215 |
214
|
neqned |
⊢ ( 𝜑 → ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ≠ 0 ) |
216 |
50 107 52 198
|
mulne0d |
⊢ ( 𝜑 → ( 2 · π ) ≠ 0 ) |
217 |
194 194 192 215 216
|
divdiv1d |
⊢ ( 𝜑 → ( ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) / ( 2 · π ) ) = ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) ) |
218 |
194 215
|
dividd |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) = 1 ) |
219 |
218
|
oveq1d |
⊢ ( 𝜑 → ( ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) / ( 2 · π ) ) = ( 1 / ( 2 · π ) ) ) |
220 |
217 219
|
eqtr3d |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) = ( 1 / ( 2 · π ) ) ) |
221 |
220
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) = ( 1 / ( 2 · π ) ) ) |
222 |
197 221
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( 1 / ( 2 · π ) ) ) |
223 |
169 173 222
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( 1 / ( 2 · π ) ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
224 |
99 223
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
225 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) / π ) ) |
226 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → 𝑁 ∈ ℤ ) |
227 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ¬ ( 𝑁 mod 2 ) = 0 ) |
228 |
227
|
neqned |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( 𝑁 mod 2 ) ≠ 0 ) |
229 |
|
oddfl |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑁 mod 2 ) ≠ 0 ) → 𝑁 = ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) |
230 |
226 228 229
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → 𝑁 = ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) |
231 |
230
|
oveq2d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( 1 ... 𝑁 ) = ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) |
232 |
231
|
sumeq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) ) |
233 |
|
fvoveq1 |
⊢ ( 𝑁 = 1 → ( ⌊ ‘ ( 𝑁 / 2 ) ) = ( ⌊ ‘ ( 1 / 2 ) ) ) |
234 |
|
halffl |
⊢ ( ⌊ ‘ ( 1 / 2 ) ) = 0 |
235 |
233 234
|
eqtrdi |
⊢ ( 𝑁 = 1 → ( ⌊ ‘ ( 𝑁 / 2 ) ) = 0 ) |
236 |
235
|
oveq2d |
⊢ ( 𝑁 = 1 → ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) = ( 2 · 0 ) ) |
237 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
238 |
236 237
|
eqtrdi |
⊢ ( 𝑁 = 1 → ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) = 0 ) |
239 |
238
|
oveq1d |
⊢ ( 𝑁 = 1 → ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) = ( 0 + 1 ) ) |
240 |
90
|
addid2i |
⊢ ( 0 + 1 ) = 1 |
241 |
239 240
|
eqtrdi |
⊢ ( 𝑁 = 1 → ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) = 1 ) |
242 |
241
|
oveq2d |
⊢ ( 𝑁 = 1 → ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) = ( 1 ... 1 ) ) |
243 |
242
|
sumeq1d |
⊢ ( 𝑁 = 1 → Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... 1 ) ( cos ‘ ( π · 𝑛 ) ) ) |
244 |
|
1z |
⊢ 1 ∈ ℤ |
245 |
|
coscl |
⊢ ( π ∈ ℂ → ( cos ‘ π ) ∈ ℂ ) |
246 |
15 245
|
ax-mp |
⊢ ( cos ‘ π ) ∈ ℂ |
247 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( π · 𝑛 ) = ( π · 1 ) ) |
248 |
15
|
mulid1i |
⊢ ( π · 1 ) = π |
249 |
247 248
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( π · 𝑛 ) = π ) |
250 |
249
|
fveq2d |
⊢ ( 𝑛 = 1 → ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ π ) ) |
251 |
250
|
fsum1 |
⊢ ( ( 1 ∈ ℤ ∧ ( cos ‘ π ) ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... 1 ) ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ π ) ) |
252 |
244 246 251
|
mp2an |
⊢ Σ 𝑛 ∈ ( 1 ... 1 ) ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ π ) |
253 |
252
|
a1i |
⊢ ( 𝑁 = 1 → Σ 𝑛 ∈ ( 1 ... 1 ) ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ π ) ) |
254 |
|
cospi |
⊢ ( cos ‘ π ) = - 1 |
255 |
254
|
a1i |
⊢ ( 𝑁 = 1 → ( cos ‘ π ) = - 1 ) |
256 |
243 253 255
|
3eqtrd |
⊢ ( 𝑁 = 1 → Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) = - 1 ) |
257 |
256
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑁 = 1 ) → Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) = - 1 ) |
258 |
|
2nn |
⊢ 2 ∈ ℕ |
259 |
258
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → 2 ∈ ℕ ) |
260 |
67
|
rehalfcld |
⊢ ( 𝜑 → ( 𝑁 / 2 ) ∈ ℝ ) |
261 |
260
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
262 |
261
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
263 |
|
2div2e1 |
⊢ ( 2 / 2 ) = 1 |
264 |
73
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → 2 ∈ ℝ ) |
265 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → 𝑁 ∈ ℝ ) |
266 |
69
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → 2 ∈ ℝ+ ) |
267 |
|
neqne |
⊢ ( ¬ 𝑁 = 1 → 𝑁 ≠ 1 ) |
268 |
|
nnne1ge2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 ) |
269 |
1 267 268
|
syl2an |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → 2 ≤ 𝑁 ) |
270 |
264 265 266 269
|
lediv1dd |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( 2 / 2 ) ≤ ( 𝑁 / 2 ) ) |
271 |
263 270
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → 1 ≤ ( 𝑁 / 2 ) ) |
272 |
260
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( 𝑁 / 2 ) ∈ ℝ ) |
273 |
|
flge |
⊢ ( ( ( 𝑁 / 2 ) ∈ ℝ ∧ 1 ∈ ℤ ) → ( 1 ≤ ( 𝑁 / 2 ) ↔ 1 ≤ ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) |
274 |
272 244 273
|
sylancl |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( 1 ≤ ( 𝑁 / 2 ) ↔ 1 ≤ ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) |
275 |
271 274
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → 1 ≤ ( ⌊ ‘ ( 𝑁 / 2 ) ) ) |
276 |
|
elnnz1 |
⊢ ( ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ↔ ( ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ∧ 1 ≤ ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) |
277 |
262 275 276
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ) |
278 |
259 277
|
nnmulcld |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ∈ ℕ ) |
279 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
280 |
278 279
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
281 |
15
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) ∧ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) → π ∈ ℂ ) |
282 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) → 𝑛 ∈ ℤ ) |
283 |
282
|
zcnd |
⊢ ( 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) → 𝑛 ∈ ℂ ) |
284 |
283
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) ∧ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) → 𝑛 ∈ ℂ ) |
285 |
281 284
|
mulcld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) ∧ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) → ( π · 𝑛 ) ∈ ℂ ) |
286 |
285
|
coscld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) ∧ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) → ( cos ‘ ( π · 𝑛 ) ) ∈ ℂ ) |
287 |
|
oveq2 |
⊢ ( 𝑛 = ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) → ( π · 𝑛 ) = ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) |
288 |
287
|
fveq2d |
⊢ ( 𝑛 = ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) → ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) ) |
289 |
280 286 288
|
fsump1 |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) ( cos ‘ ( π · 𝑛 ) ) + ( cos ‘ ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) ) ) |
290 |
15
|
a1i |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) → π ∈ ℂ ) |
291 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) → 𝑛 ∈ ℤ ) |
292 |
291
|
zcnd |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) → 𝑛 ∈ ℂ ) |
293 |
290 292
|
mulcomd |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) → ( π · 𝑛 ) = ( 𝑛 · π ) ) |
294 |
293
|
fveq2d |
⊢ ( 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) → ( cos ‘ ( π · 𝑛 ) ) = ( cos ‘ ( 𝑛 · π ) ) ) |
295 |
294
|
sumeq2i |
⊢ Σ 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) ( cos ‘ ( π · 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) ( cos ‘ ( 𝑛 · π ) ) |
296 |
|
dirkertrigeqlem1 |
⊢ ( ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℕ → Σ 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) ( cos ‘ ( 𝑛 · π ) ) = 0 ) |
297 |
277 296
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → Σ 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) ( cos ‘ ( 𝑛 · π ) ) = 0 ) |
298 |
295 297
|
syl5eq |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → Σ 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) ( cos ‘ ( π · 𝑛 ) ) = 0 ) |
299 |
261
|
zcnd |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℂ ) |
300 |
50 299
|
mulcld |
⊢ ( 𝜑 → ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ∈ ℂ ) |
301 |
107 300 109
|
adddid |
⊢ ( 𝜑 → ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) = ( ( π · ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) + ( π · 1 ) ) ) |
302 |
107 50 299
|
mul13d |
⊢ ( 𝜑 → ( π · ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) = ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) |
303 |
248
|
a1i |
⊢ ( 𝜑 → ( π · 1 ) = π ) |
304 |
302 303
|
oveq12d |
⊢ ( 𝜑 → ( ( π · ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) + ( π · 1 ) ) = ( ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) + π ) ) |
305 |
299 192
|
mulcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ∈ ℂ ) |
306 |
305 107
|
addcomd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) + π ) = ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) |
307 |
301 304 306
|
3eqtrd |
⊢ ( 𝜑 → ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) = ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) |
308 |
307
|
fveq2d |
⊢ ( 𝜑 → ( cos ‘ ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) = ( cos ‘ ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) ) |
309 |
|
cosper |
⊢ ( ( π ∈ ℂ ∧ ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) → ( cos ‘ ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) = ( cos ‘ π ) ) |
310 |
107 261 309
|
syl2anc |
⊢ ( 𝜑 → ( cos ‘ ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) = ( cos ‘ π ) ) |
311 |
254
|
a1i |
⊢ ( 𝜑 → ( cos ‘ π ) = - 1 ) |
312 |
308 310 311
|
3eqtrd |
⊢ ( 𝜑 → ( cos ‘ ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) = - 1 ) |
313 |
312
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( cos ‘ ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) = - 1 ) |
314 |
298 313
|
oveq12d |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( Σ 𝑛 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) ) ( cos ‘ ( π · 𝑛 ) ) + ( cos ‘ ( π · ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ) ) = ( 0 + - 1 ) ) |
315 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
316 |
315
|
addid2i |
⊢ ( 0 + - 1 ) = - 1 |
317 |
316
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → ( 0 + - 1 ) = - 1 ) |
318 |
289 314 317
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 1 ) → Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) = - 1 ) |
319 |
257 318
|
pm2.61dan |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) = - 1 ) |
320 |
319
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → Σ 𝑛 ∈ ( 1 ... ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) ) ( cos ‘ ( π · 𝑛 ) ) = - 1 ) |
321 |
232 320
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) = - 1 ) |
322 |
321
|
oveq2d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) = ( ( 1 / 2 ) + - 1 ) ) |
323 |
322
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( π · 𝑛 ) ) ) / π ) = ( ( ( 1 / 2 ) + - 1 ) / π ) ) |
324 |
168 172
|
eqtrd |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) = ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
325 |
324
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) = ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
326 |
230
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( 𝑁 · π ) = ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) · π ) ) |
327 |
300 109 107
|
adddird |
⊢ ( 𝜑 → ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) · π ) = ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) + ( 1 · π ) ) ) |
328 |
107
|
mulid2d |
⊢ ( 𝜑 → ( 1 · π ) = π ) |
329 |
328
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) + ( 1 · π ) ) = ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) + π ) ) |
330 |
300 107
|
mulcld |
⊢ ( 𝜑 → ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) ∈ ℂ ) |
331 |
330 107
|
addcomd |
⊢ ( 𝜑 → ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) + π ) = ( π + ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) ) ) |
332 |
327 329 331
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) · π ) = ( π + ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) ) ) |
333 |
332
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) + 1 ) · π ) = ( π + ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) ) ) |
334 |
50 299
|
mulcomd |
⊢ ( 𝜑 → ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) = ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · 2 ) ) |
335 |
334
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) = ( ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · 2 ) · π ) ) |
336 |
299 50 107
|
mulassd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · 2 ) · π ) = ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) |
337 |
335 336
|
eqtrd |
⊢ ( 𝜑 → ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) = ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) |
338 |
337
|
oveq2d |
⊢ ( 𝜑 → ( π + ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) ) = ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) |
339 |
338
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( π + ( ( 2 · ( ⌊ ‘ ( 𝑁 / 2 ) ) ) · π ) ) = ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) |
340 |
326 333 339
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( 𝑁 · π ) = ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) |
341 |
340
|
oveq2d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) = ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) ) |
342 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( 𝐾 + ( 1 / 2 ) ) · π ) ∈ ℂ ) |
343 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → π ∈ ℂ ) |
344 |
305
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ∈ ℂ ) |
345 |
342 343 344
|
addassd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) = ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( π + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) ) |
346 |
341 345
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) = ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) |
347 |
346
|
fveq2d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) = ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) ) |
348 |
347
|
oveq1d |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + ( 𝑁 · π ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
349 |
193 107
|
addcld |
⊢ ( 𝜑 → ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) ∈ ℂ ) |
350 |
|
sinper |
⊢ ( ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) ∈ ℂ ∧ ( ⌊ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) → ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) = ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) ) ) |
351 |
349 261 350
|
syl2anc |
⊢ ( 𝜑 → ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) = ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) ) ) |
352 |
|
sinppi |
⊢ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) ∈ ℂ → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) ) = - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) |
353 |
193 352
|
syl |
⊢ ( 𝜑 → ( sin ‘ ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) ) = - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) |
354 |
351 353
|
eqtrd |
⊢ ( 𝜑 → ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) = - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) |
355 |
354
|
oveq1d |
⊢ ( 𝜑 → ( ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) ) |
356 |
195
|
oveq2d |
⊢ ( 𝜑 → ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) ) |
357 |
194 194 215
|
divnegd |
⊢ ( 𝜑 → - ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) = ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) |
358 |
218
|
negeqd |
⊢ ( 𝜑 → - ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) = - 1 ) |
359 |
357 358
|
eqtr3d |
⊢ ( 𝜑 → ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) = - 1 ) |
360 |
359
|
oveq1d |
⊢ ( 𝜑 → ( ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) / ( 2 · π ) ) = ( - 1 / ( 2 · π ) ) ) |
361 |
194
|
negcld |
⊢ ( 𝜑 → - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ∈ ℂ ) |
362 |
361 194 192 215 216
|
divdiv1d |
⊢ ( 𝜑 → ( ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) / ( 2 · π ) ) = ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) ) |
363 |
86 90
|
negsubi |
⊢ ( ( 1 / 2 ) + - 1 ) = ( ( 1 / 2 ) − 1 ) |
364 |
90 86
|
negsubdi2i |
⊢ - ( 1 − ( 1 / 2 ) ) = ( ( 1 / 2 ) − 1 ) |
365 |
|
1mhlfehlf |
⊢ ( 1 − ( 1 / 2 ) ) = ( 1 / 2 ) |
366 |
365
|
negeqi |
⊢ - ( 1 − ( 1 / 2 ) ) = - ( 1 / 2 ) |
367 |
|
divneg |
⊢ ( ( 1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( 1 / 2 ) = ( - 1 / 2 ) ) |
368 |
90 118 51 367
|
mp3an |
⊢ - ( 1 / 2 ) = ( - 1 / 2 ) |
369 |
366 368
|
eqtri |
⊢ - ( 1 − ( 1 / 2 ) ) = ( - 1 / 2 ) |
370 |
363 364 369
|
3eqtr2i |
⊢ ( ( 1 / 2 ) + - 1 ) = ( - 1 / 2 ) |
371 |
370
|
oveq1i |
⊢ ( ( ( 1 / 2 ) + - 1 ) / π ) = ( ( - 1 / 2 ) / π ) |
372 |
|
divdiv1 |
⊢ ( ( - 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( π ∈ ℂ ∧ π ≠ 0 ) ) → ( ( - 1 / 2 ) / π ) = ( - 1 / ( 2 · π ) ) ) |
373 |
315 91 95 372
|
mp3an |
⊢ ( ( - 1 / 2 ) / π ) = ( - 1 / ( 2 · π ) ) |
374 |
371 373
|
eqtr2i |
⊢ ( - 1 / ( 2 · π ) ) = ( ( ( 1 / 2 ) + - 1 ) / π ) |
375 |
374
|
a1i |
⊢ ( 𝜑 → ( - 1 / ( 2 · π ) ) = ( ( ( 1 / 2 ) + - 1 ) / π ) ) |
376 |
360 362 375
|
3eqtr3d |
⊢ ( 𝜑 → ( - ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) / ( ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) · ( 2 · π ) ) ) = ( ( ( 1 / 2 ) + - 1 ) / π ) ) |
377 |
355 356 376
|
3eqtrd |
⊢ ( 𝜑 → ( ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( ( ( 1 / 2 ) + - 1 ) / π ) ) |
378 |
377
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( sin ‘ ( ( ( ( 𝐾 + ( 1 / 2 ) ) · π ) + π ) + ( ( ⌊ ‘ ( 𝑁 / 2 ) ) · ( 2 · π ) ) ) ) / ( ( 2 · π ) · ( sin ‘ ( ( 𝐾 + ( 1 / 2 ) ) · π ) ) ) ) = ( ( ( 1 / 2 ) + - 1 ) / π ) ) |
379 |
325 348 378
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + - 1 ) / π ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
380 |
225 323 379
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑁 mod 2 ) = 0 ) → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |
381 |
224 380
|
pm2.61dan |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( cos ‘ ( 𝑛 · 𝐴 ) ) ) / π ) = ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝐴 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝐴 / 2 ) ) ) ) ) |