| Step |
Hyp |
Ref |
Expression |
| 1 |
|
distop |
⊢ ( 𝐴 ∈ Fin → 𝒫 𝐴 ∈ Top ) |
| 2 |
|
pwfi |
⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) |
| 3 |
2
|
biimpi |
⊢ ( 𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin ) |
| 4 |
1 3
|
elind |
⊢ ( 𝐴 ∈ Fin → 𝒫 𝐴 ∈ ( Top ∩ Fin ) ) |
| 5 |
|
fincmp |
⊢ ( 𝒫 𝐴 ∈ ( Top ∩ Fin ) → 𝒫 𝐴 ∈ Comp ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ Fin → 𝒫 𝐴 ∈ Comp ) |
| 7 |
|
simpr |
⊢ ( ( 𝒫 𝐴 ∈ Comp ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 8 |
7
|
snssd |
⊢ ( ( 𝒫 𝐴 ∈ Comp ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 } ⊆ 𝐴 ) |
| 9 |
|
vsnex |
⊢ { 𝑥 } ∈ V |
| 10 |
9
|
elpw |
⊢ ( { 𝑥 } ∈ 𝒫 𝐴 ↔ { 𝑥 } ⊆ 𝐴 ) |
| 11 |
8 10
|
sylibr |
⊢ ( ( 𝒫 𝐴 ∈ Comp ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 } ∈ 𝒫 𝐴 ) |
| 12 |
11
|
fmpttd |
⊢ ( 𝒫 𝐴 ∈ Comp → ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) : 𝐴 ⟶ 𝒫 𝐴 ) |
| 13 |
12
|
frnd |
⊢ ( 𝒫 𝐴 ∈ Comp → ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ⊆ 𝒫 𝐴 ) |
| 14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) |
| 15 |
14
|
rnmpt |
⊢ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } |
| 16 |
15
|
unieqi |
⊢ ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } |
| 17 |
9
|
dfiun2 |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑥 } = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } |
| 18 |
|
iunid |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑥 } = 𝐴 |
| 19 |
16 17 18
|
3eqtr2ri |
⊢ 𝐴 = ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) |
| 20 |
19
|
a1i |
⊢ ( 𝒫 𝐴 ∈ Comp → 𝐴 = ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ) |
| 21 |
|
unipw |
⊢ ∪ 𝒫 𝐴 = 𝐴 |
| 22 |
21
|
eqcomi |
⊢ 𝐴 = ∪ 𝒫 𝐴 |
| 23 |
22
|
cmpcov |
⊢ ( ( 𝒫 𝐴 ∈ Comp ∧ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ⊆ 𝒫 𝐴 ∧ 𝐴 = ∪ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ) → ∃ 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) 𝐴 = ∪ 𝑦 ) |
| 24 |
13 20 23
|
mpd3an23 |
⊢ ( 𝒫 𝐴 ∈ Comp → ∃ 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) 𝐴 = ∪ 𝑦 ) |
| 25 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) → 𝑦 ∈ Fin ) |
| 26 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) → 𝑦 ∈ 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ) |
| 27 |
26
|
elpwid |
⊢ ( 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) → 𝑦 ⊆ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ) |
| 28 |
|
snfi |
⊢ { 𝑥 } ∈ Fin |
| 29 |
28
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 { 𝑥 } ∈ Fin |
| 30 |
14
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 { 𝑥 } ∈ Fin ↔ ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) : 𝐴 ⟶ Fin ) |
| 31 |
29 30
|
mpbi |
⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) : 𝐴 ⟶ Fin |
| 32 |
|
frn |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) : 𝐴 ⟶ Fin → ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ⊆ Fin ) |
| 33 |
31 32
|
mp1i |
⊢ ( 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) → ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ⊆ Fin ) |
| 34 |
27 33
|
sstrd |
⊢ ( 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) → 𝑦 ⊆ Fin ) |
| 35 |
|
unifi |
⊢ ( ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ Fin ) → ∪ 𝑦 ∈ Fin ) |
| 36 |
25 34 35
|
syl2anc |
⊢ ( 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) → ∪ 𝑦 ∈ Fin ) |
| 37 |
|
eleq1 |
⊢ ( 𝐴 = ∪ 𝑦 → ( 𝐴 ∈ Fin ↔ ∪ 𝑦 ∈ Fin ) ) |
| 38 |
36 37
|
syl5ibrcom |
⊢ ( 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) → ( 𝐴 = ∪ 𝑦 → 𝐴 ∈ Fin ) ) |
| 39 |
38
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ ( 𝒫 ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 } ) ∩ Fin ) 𝐴 = ∪ 𝑦 → 𝐴 ∈ Fin ) |
| 40 |
24 39
|
syl |
⊢ ( 𝒫 𝐴 ∈ Comp → 𝐴 ∈ Fin ) |
| 41 |
6 40
|
impbii |
⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Comp ) |