Step |
Hyp |
Ref |
Expression |
1 |
|
discr.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
discr.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
discr.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
discr.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ) |
5 |
|
discr1.5 |
⊢ 𝑋 = if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) |
6 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ↑ 2 ) = ( 𝑋 ↑ 2 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐴 · ( 𝑥 ↑ 2 ) ) = ( 𝐴 · ( 𝑋 ↑ 2 ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑋 ) ) |
9 |
7 8
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) = ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ) |
11 |
10
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ↔ 0 ≤ ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ) ) |
12 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ∀ 𝑥 ∈ ℝ 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ) |
14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐵 ∈ ℝ ) |
15 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐶 ∈ ℝ ) |
16 |
|
0re |
⊢ 0 ∈ ℝ |
17 |
|
ifcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
18 |
15 16 17
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
19 |
14 18
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℝ ) |
20 |
|
peano2re |
⊢ ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℝ → ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) ∈ ℝ ) |
21 |
19 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) ∈ ℝ ) |
22 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ ) |
23 |
22
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → - 𝐴 ∈ ℝ ) |
24 |
1
|
lt0neg1d |
⊢ ( 𝜑 → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
25 |
24
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 0 < - 𝐴 ) |
26 |
25
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → - 𝐴 ≠ 0 ) |
27 |
21 23 26
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ∈ ℝ ) |
28 |
|
1re |
⊢ 1 ∈ ℝ |
29 |
|
ifcl |
⊢ ( ( ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) ∈ ℝ ) |
30 |
27 28 29
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) ∈ ℝ ) |
31 |
5 30
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝑋 ∈ ℝ ) |
32 |
11 13 31
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 0 ≤ ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ) |
33 |
|
resqcl |
⊢ ( 𝑋 ∈ ℝ → ( 𝑋 ↑ 2 ) ∈ ℝ ) |
34 |
31 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝑋 ↑ 2 ) ∈ ℝ ) |
35 |
22 34
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐴 · ( 𝑋 ↑ 2 ) ) ∈ ℝ ) |
36 |
14 31
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐵 · 𝑋 ) ∈ ℝ ) |
37 |
35 36
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) ∈ ℝ ) |
38 |
37 15
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ∈ ℝ ) |
39 |
22 31
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐴 · 𝑋 ) ∈ ℝ ) |
40 |
39 19
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ∈ ℝ ) |
41 |
40 31
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) ∈ ℝ ) |
42 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 0 ∈ ℝ ) |
43 |
18 31
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ∈ ℝ ) |
44 |
|
max2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
45 |
16 15 44
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐶 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
46 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
47 |
16 15 46
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
48 |
|
max1 |
⊢ ( ( 1 ∈ ℝ ∧ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ∈ ℝ ) → 1 ≤ if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) ) |
49 |
28 27 48
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 1 ≤ if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) ) |
50 |
49 5
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 1 ≤ 𝑋 ) |
51 |
18 31 47 50
|
lemulge11d |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ≤ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ) |
52 |
15 18 43 45 51
|
letrd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐶 ≤ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ) |
53 |
15 43 37 52
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ≤ ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ) ) |
54 |
39 14
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐴 · 𝑋 ) + 𝐵 ) ∈ ℝ ) |
55 |
54
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐴 · 𝑋 ) + 𝐵 ) ∈ ℂ ) |
56 |
18
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℂ ) |
57 |
31
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝑋 ∈ ℂ ) |
58 |
55 56 57
|
adddird |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) · 𝑋 ) = ( ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) · 𝑋 ) + ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ) ) |
59 |
39
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐴 · 𝑋 ) ∈ ℂ ) |
60 |
14
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐵 ∈ ℂ ) |
61 |
59 60 56
|
addassd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
62 |
61
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) · 𝑋 ) = ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) ) |
63 |
22
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 𝐴 ∈ ℂ ) |
64 |
63 57 57
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐴 · 𝑋 ) · 𝑋 ) = ( 𝐴 · ( 𝑋 · 𝑋 ) ) ) |
65 |
|
sqval |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 ↑ 2 ) = ( 𝑋 · 𝑋 ) ) |
66 |
57 65
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝑋 ↑ 2 ) = ( 𝑋 · 𝑋 ) ) |
67 |
66
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐴 · ( 𝑋 ↑ 2 ) ) = ( 𝐴 · ( 𝑋 · 𝑋 ) ) ) |
68 |
64 67
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐴 · 𝑋 ) · 𝑋 ) = ( 𝐴 · ( 𝑋 ↑ 2 ) ) ) |
69 |
68
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) · 𝑋 ) + ( 𝐵 · 𝑋 ) ) = ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) ) |
70 |
59 57 60 69
|
joinlmuladdmuld |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) · 𝑋 ) = ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) ) |
71 |
70
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) · 𝑋 ) + ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ) = ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ) ) |
72 |
58 62 71
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) = ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝑋 ) ) ) |
73 |
53 72
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ≤ ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) ) |
74 |
23 31
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( - 𝐴 · 𝑋 ) ∈ ℝ ) |
75 |
19
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) < ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) ) |
76 |
|
max2 |
⊢ ( ( 1 ∈ ℝ ∧ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ∈ ℝ ) → ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ≤ if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) ) |
77 |
28 27 76
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ≤ if ( 1 ≤ ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) , 1 ) ) |
78 |
77 5
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ≤ 𝑋 ) |
79 |
|
ledivmul |
⊢ ( ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ) → ( ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ≤ 𝑋 ↔ ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) ≤ ( - 𝐴 · 𝑋 ) ) ) |
80 |
21 31 23 25 79
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) / - 𝐴 ) ≤ 𝑋 ↔ ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) ≤ ( - 𝐴 · 𝑋 ) ) ) |
81 |
78 80
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) + 1 ) ≤ ( - 𝐴 · 𝑋 ) ) |
82 |
19 21 74 75 81
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) < ( - 𝐴 · 𝑋 ) ) |
83 |
63 57
|
mulneg1d |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( - 𝐴 · 𝑋 ) = - ( 𝐴 · 𝑋 ) ) |
84 |
|
df-neg |
⊢ - ( 𝐴 · 𝑋 ) = ( 0 − ( 𝐴 · 𝑋 ) ) |
85 |
83 84
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( - 𝐴 · 𝑋 ) = ( 0 − ( 𝐴 · 𝑋 ) ) ) |
86 |
82 85
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) < ( 0 − ( 𝐴 · 𝑋 ) ) ) |
87 |
39 19 42
|
ltaddsub2d |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) < 0 ↔ ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) < ( 0 − ( 𝐴 · 𝑋 ) ) ) ) |
88 |
86 87
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) < 0 ) |
89 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 1 ∈ ℝ ) |
90 |
|
0lt1 |
⊢ 0 < 1 |
91 |
90
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 0 < 1 ) |
92 |
42 89 31 91 50
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 0 < 𝑋 ) |
93 |
|
ltmul1 |
⊢ ( ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 𝑋 ∈ ℝ ∧ 0 < 𝑋 ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) < 0 ↔ ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) < ( 0 · 𝑋 ) ) ) |
94 |
40 42 31 92 93
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) < 0 ↔ ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) < ( 0 · 𝑋 ) ) ) |
95 |
88 94
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) < ( 0 · 𝑋 ) ) |
96 |
57
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( 0 · 𝑋 ) = 0 ) |
97 |
95 96
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) · 𝑋 ) < 0 ) |
98 |
38 41 42 73 97
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) < 0 ) |
99 |
|
ltnle |
⊢ ( ( ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) < 0 ↔ ¬ 0 ≤ ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ) ) |
100 |
38 16 99
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ( ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) < 0 ↔ ¬ 0 ≤ ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ) ) |
101 |
98 100
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → ¬ 0 ≤ ( ( ( 𝐴 · ( 𝑋 ↑ 2 ) ) + ( 𝐵 · 𝑋 ) ) + 𝐶 ) ) |
102 |
32 101
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐴 < 0 ) |
103 |
|
lelttric |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ∨ 𝐴 < 0 ) ) |
104 |
16 1 103
|
sylancr |
⊢ ( 𝜑 → ( 0 ≤ 𝐴 ∨ 𝐴 < 0 ) ) |
105 |
104
|
ord |
⊢ ( 𝜑 → ( ¬ 0 ≤ 𝐴 → 𝐴 < 0 ) ) |
106 |
102 105
|
mt3d |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |