| Step | Hyp | Ref | Expression | 
						
							| 1 |  | discr.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | discr.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | discr.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 4 |  | discr.4 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  0  ≤  ( ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( 𝐵  ·  𝑥 ) )  +  𝐶 ) ) | 
						
							| 5 |  | discr1.5 | ⊢ 𝑋  =  if ( 1  ≤  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 ) ,  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 ) ,  1 ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥 ↑ 2 )  =  ( 𝑋 ↑ 2 ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑥  =  𝑋  →  ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  =  ( 𝐴  ·  ( 𝑋 ↑ 2 ) ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐵  ·  𝑥 )  =  ( 𝐵  ·  𝑋 ) ) | 
						
							| 9 | 7 8 | oveq12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( 𝐵  ·  𝑥 ) )  =  ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( 𝑥  =  𝑋  →  ( ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( 𝐵  ·  𝑥 ) )  +  𝐶 )  =  ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  𝐶 ) ) | 
						
							| 11 | 10 | breq2d | ⊢ ( 𝑥  =  𝑋  →  ( 0  ≤  ( ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( 𝐵  ·  𝑥 ) )  +  𝐶 )  ↔  0  ≤  ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  𝐶 ) ) ) | 
						
							| 12 | 4 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ 0  ≤  ( ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( 𝐵  ·  𝑥 ) )  +  𝐶 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ∀ 𝑥  ∈  ℝ 0  ≤  ( ( ( 𝐴  ·  ( 𝑥 ↑ 2 ) )  +  ( 𝐵  ·  𝑥 ) )  +  𝐶 ) ) | 
						
							| 14 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  𝐵  ∈  ℝ ) | 
						
							| 15 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  𝐶  ∈  ℝ ) | 
						
							| 16 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 17 |  | ifcl | ⊢ ( ( 𝐶  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 18 | 15 16 17 | sylancl | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 19 | 14 18 | readdcld | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  ∈  ℝ ) | 
						
							| 20 |  | peano2re | ⊢ ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  ∈  ℝ  →  ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  ∈  ℝ ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  ∈  ℝ ) | 
						
							| 22 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  𝐴  ∈  ℝ ) | 
						
							| 23 | 22 | renegcld | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  - 𝐴  ∈  ℝ ) | 
						
							| 24 | 1 | lt0neg1d | ⊢ ( 𝜑  →  ( 𝐴  <  0  ↔  0  <  - 𝐴 ) ) | 
						
							| 25 | 24 | biimpa | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  0  <  - 𝐴 ) | 
						
							| 26 | 25 | gt0ne0d | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  - 𝐴  ≠  0 ) | 
						
							| 27 | 21 23 26 | redivcld | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 )  ∈  ℝ ) | 
						
							| 28 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 29 |  | ifcl | ⊢ ( ( ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  if ( 1  ≤  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 ) ,  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 ) ,  1 )  ∈  ℝ ) | 
						
							| 30 | 27 28 29 | sylancl | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  if ( 1  ≤  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 ) ,  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 ) ,  1 )  ∈  ℝ ) | 
						
							| 31 | 5 30 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  𝑋  ∈  ℝ ) | 
						
							| 32 | 11 13 31 | rspcdva | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  0  ≤  ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  𝐶 ) ) | 
						
							| 33 |  | resqcl | ⊢ ( 𝑋  ∈  ℝ  →  ( 𝑋 ↑ 2 )  ∈  ℝ ) | 
						
							| 34 | 31 33 | syl | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( 𝑋 ↑ 2 )  ∈  ℝ ) | 
						
							| 35 | 22 34 | remulcld | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 36 | 14 31 | remulcld | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( 𝐵  ·  𝑋 )  ∈  ℝ ) | 
						
							| 37 | 35 36 | readdcld | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  ∈  ℝ ) | 
						
							| 38 | 37 15 | readdcld | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  𝐶 )  ∈  ℝ ) | 
						
							| 39 | 22 31 | remulcld | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( 𝐴  ·  𝑋 )  ∈  ℝ ) | 
						
							| 40 | 39 19 | readdcld | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) )  ∈  ℝ ) | 
						
							| 41 | 40 31 | remulcld | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) )  ·  𝑋 )  ∈  ℝ ) | 
						
							| 42 | 16 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  0  ∈  ℝ ) | 
						
							| 43 | 18 31 | remulcld | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝑋 )  ∈  ℝ ) | 
						
							| 44 |  | max2 | ⊢ ( ( 0  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐶  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 45 | 16 15 44 | sylancr | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  𝐶  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 46 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  0  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 47 | 16 15 46 | sylancr | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  0  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 48 |  | max1 | ⊢ ( ( 1  ∈  ℝ  ∧  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 )  ∈  ℝ )  →  1  ≤  if ( 1  ≤  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 ) ,  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 ) ,  1 ) ) | 
						
							| 49 | 28 27 48 | sylancr | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  1  ≤  if ( 1  ≤  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 ) ,  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 ) ,  1 ) ) | 
						
							| 50 | 49 5 | breqtrrdi | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  1  ≤  𝑋 ) | 
						
							| 51 | 18 31 47 50 | lemulge11d | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ≤  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝑋 ) ) | 
						
							| 52 | 15 18 43 45 51 | letrd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  𝐶  ≤  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝑋 ) ) | 
						
							| 53 | 15 43 37 52 | leadd2dd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  𝐶 )  ≤  ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝑋 ) ) ) | 
						
							| 54 | 39 14 | readdcld | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( 𝐴  ·  𝑋 )  +  𝐵 )  ∈  ℝ ) | 
						
							| 55 | 54 | recnd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( 𝐴  ·  𝑋 )  +  𝐵 )  ∈  ℂ ) | 
						
							| 56 | 18 | recnd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ℂ ) | 
						
							| 57 | 31 | recnd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  𝑋  ∈  ℂ ) | 
						
							| 58 | 55 56 57 | adddird | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( ( 𝐴  ·  𝑋 )  +  𝐵 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  ·  𝑋 )  =  ( ( ( ( 𝐴  ·  𝑋 )  +  𝐵 )  ·  𝑋 )  +  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝑋 ) ) ) | 
						
							| 59 | 39 | recnd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( 𝐴  ·  𝑋 )  ∈  ℂ ) | 
						
							| 60 | 14 | recnd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  𝐵  ∈  ℂ ) | 
						
							| 61 | 59 60 56 | addassd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐴  ·  𝑋 )  +  𝐵 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  =  ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ) ) | 
						
							| 62 | 61 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( ( 𝐴  ·  𝑋 )  +  𝐵 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  ·  𝑋 )  =  ( ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) )  ·  𝑋 ) ) | 
						
							| 63 | 22 | recnd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  𝐴  ∈  ℂ ) | 
						
							| 64 | 63 57 57 | mulassd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( 𝐴  ·  𝑋 )  ·  𝑋 )  =  ( 𝐴  ·  ( 𝑋  ·  𝑋 ) ) ) | 
						
							| 65 |  | sqval | ⊢ ( 𝑋  ∈  ℂ  →  ( 𝑋 ↑ 2 )  =  ( 𝑋  ·  𝑋 ) ) | 
						
							| 66 | 57 65 | syl | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( 𝑋 ↑ 2 )  =  ( 𝑋  ·  𝑋 ) ) | 
						
							| 67 | 66 | oveq2d | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  =  ( 𝐴  ·  ( 𝑋  ·  𝑋 ) ) ) | 
						
							| 68 | 64 67 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( 𝐴  ·  𝑋 )  ·  𝑋 )  =  ( 𝐴  ·  ( 𝑋 ↑ 2 ) ) ) | 
						
							| 69 | 68 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐴  ·  𝑋 )  ·  𝑋 )  +  ( 𝐵  ·  𝑋 ) )  =  ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 70 | 59 57 60 69 | joinlmuladdmuld | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐴  ·  𝑋 )  +  𝐵 )  ·  𝑋 )  =  ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) ) ) | 
						
							| 71 | 70 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( ( 𝐴  ·  𝑋 )  +  𝐵 )  ·  𝑋 )  +  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝑋 ) )  =  ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝑋 ) ) ) | 
						
							| 72 | 58 62 71 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) )  ·  𝑋 )  =  ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝑋 ) ) ) | 
						
							| 73 | 53 72 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  𝐶 )  ≤  ( ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) )  ·  𝑋 ) ) | 
						
							| 74 | 23 31 | remulcld | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( - 𝐴  ·  𝑋 )  ∈  ℝ ) | 
						
							| 75 | 19 | ltp1d | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  <  ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 ) ) | 
						
							| 76 |  | max2 | ⊢ ( ( 1  ∈  ℝ  ∧  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 )  ∈  ℝ )  →  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 )  ≤  if ( 1  ≤  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 ) ,  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 ) ,  1 ) ) | 
						
							| 77 | 28 27 76 | sylancr | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 )  ≤  if ( 1  ≤  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 ) ,  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 ) ,  1 ) ) | 
						
							| 78 | 77 5 | breqtrrdi | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 )  ≤  𝑋 ) | 
						
							| 79 |  | ledivmul | ⊢ ( ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  ∈  ℝ  ∧  𝑋  ∈  ℝ  ∧  ( - 𝐴  ∈  ℝ  ∧  0  <  - 𝐴 ) )  →  ( ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 )  ≤  𝑋  ↔  ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  ≤  ( - 𝐴  ·  𝑋 ) ) ) | 
						
							| 80 | 21 31 23 25 79 | syl112anc | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  /  - 𝐴 )  ≤  𝑋  ↔  ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  ≤  ( - 𝐴  ·  𝑋 ) ) ) | 
						
							| 81 | 78 80 | mpbid | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  +  1 )  ≤  ( - 𝐴  ·  𝑋 ) ) | 
						
							| 82 | 19 21 74 75 81 | ltletrd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  <  ( - 𝐴  ·  𝑋 ) ) | 
						
							| 83 | 63 57 | mulneg1d | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( - 𝐴  ·  𝑋 )  =  - ( 𝐴  ·  𝑋 ) ) | 
						
							| 84 |  | df-neg | ⊢ - ( 𝐴  ·  𝑋 )  =  ( 0  −  ( 𝐴  ·  𝑋 ) ) | 
						
							| 85 | 83 84 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( - 𝐴  ·  𝑋 )  =  ( 0  −  ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 86 | 82 85 | breqtrd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  <  ( 0  −  ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 87 | 39 19 42 | ltaddsub2d | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) )  <  0  ↔  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  <  ( 0  −  ( 𝐴  ·  𝑋 ) ) ) ) | 
						
							| 88 | 86 87 | mpbird | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) )  <  0 ) | 
						
							| 89 | 28 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  1  ∈  ℝ ) | 
						
							| 90 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 91 | 90 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  0  <  1 ) | 
						
							| 92 | 42 89 31 91 50 | ltletrd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  0  <  𝑋 ) | 
						
							| 93 |  | ltmul1 | ⊢ ( ( ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) )  ∈  ℝ  ∧  0  ∈  ℝ  ∧  ( 𝑋  ∈  ℝ  ∧  0  <  𝑋 ) )  →  ( ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) )  <  0  ↔  ( ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) )  ·  𝑋 )  <  ( 0  ·  𝑋 ) ) ) | 
						
							| 94 | 40 42 31 92 93 | syl112anc | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) )  <  0  ↔  ( ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) )  ·  𝑋 )  <  ( 0  ·  𝑋 ) ) ) | 
						
							| 95 | 88 94 | mpbid | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) )  ·  𝑋 )  <  ( 0  ·  𝑋 ) ) | 
						
							| 96 | 57 | mul02d | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( 0  ·  𝑋 )  =  0 ) | 
						
							| 97 | 95 96 | breqtrd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐴  ·  𝑋 )  +  ( 𝐵  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) )  ·  𝑋 )  <  0 ) | 
						
							| 98 | 38 41 42 73 97 | lelttrd | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  𝐶 )  <  0 ) | 
						
							| 99 |  | ltnle | ⊢ ( ( ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  𝐶 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  𝐶 )  <  0  ↔  ¬  0  ≤  ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  𝐶 ) ) ) | 
						
							| 100 | 38 16 99 | sylancl | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  𝐶 )  <  0  ↔  ¬  0  ≤  ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  𝐶 ) ) ) | 
						
							| 101 | 98 100 | mpbid | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ¬  0  ≤  ( ( ( 𝐴  ·  ( 𝑋 ↑ 2 ) )  +  ( 𝐵  ·  𝑋 ) )  +  𝐶 ) ) | 
						
							| 102 | 32 101 | pm2.65da | ⊢ ( 𝜑  →  ¬  𝐴  <  0 ) | 
						
							| 103 |  | lelttric | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  ≤  𝐴  ∨  𝐴  <  0 ) ) | 
						
							| 104 | 16 1 103 | sylancr | ⊢ ( 𝜑  →  ( 0  ≤  𝐴  ∨  𝐴  <  0 ) ) | 
						
							| 105 | 104 | ord | ⊢ ( 𝜑  →  ( ¬  0  ≤  𝐴  →  𝐴  <  0 ) ) | 
						
							| 106 | 102 105 | mt3d | ⊢ ( 𝜑  →  0  ≤  𝐴 ) |