Step |
Hyp |
Ref |
Expression |
1 |
|
distop |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top ) |
2 |
|
simplrl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ∈ 𝐴 ) |
3 |
2
|
snssd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → { 𝑥 } ⊆ 𝐴 ) |
4 |
|
snex |
⊢ { 𝑥 } ∈ V |
5 |
4
|
elpw |
⊢ ( { 𝑥 } ∈ 𝒫 𝐴 ↔ { 𝑥 } ⊆ 𝐴 ) |
6 |
3 5
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → { 𝑥 } ∈ 𝒫 𝐴 ) |
7 |
|
simplrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑦 ∈ 𝐴 ) |
8 |
7
|
snssd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → { 𝑦 } ⊆ 𝐴 ) |
9 |
|
snex |
⊢ { 𝑦 } ∈ V |
10 |
9
|
elpw |
⊢ ( { 𝑦 } ∈ 𝒫 𝐴 ↔ { 𝑦 } ⊆ 𝐴 ) |
11 |
8 10
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → { 𝑦 } ∈ 𝒫 𝐴 ) |
12 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
13 |
12
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑥 ∈ { 𝑥 } ) |
14 |
|
vsnid |
⊢ 𝑦 ∈ { 𝑦 } |
15 |
14
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → 𝑦 ∈ { 𝑦 } ) |
16 |
|
disjsn2 |
⊢ ( 𝑥 ≠ 𝑦 → ( { 𝑥 } ∩ { 𝑦 } ) = ∅ ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → ( { 𝑥 } ∩ { 𝑦 } ) = ∅ ) |
18 |
|
eleq2 |
⊢ ( 𝑢 = { 𝑥 } → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ { 𝑥 } ) ) |
19 |
|
ineq1 |
⊢ ( 𝑢 = { 𝑥 } → ( 𝑢 ∩ 𝑣 ) = ( { 𝑥 } ∩ 𝑣 ) ) |
20 |
19
|
eqeq1d |
⊢ ( 𝑢 = { 𝑥 } → ( ( 𝑢 ∩ 𝑣 ) = ∅ ↔ ( { 𝑥 } ∩ 𝑣 ) = ∅ ) ) |
21 |
18 20
|
3anbi13d |
⊢ ( 𝑢 = { 𝑥 } → ( ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ↔ ( 𝑥 ∈ { 𝑥 } ∧ 𝑦 ∈ 𝑣 ∧ ( { 𝑥 } ∩ 𝑣 ) = ∅ ) ) ) |
22 |
|
eleq2 |
⊢ ( 𝑣 = { 𝑦 } → ( 𝑦 ∈ 𝑣 ↔ 𝑦 ∈ { 𝑦 } ) ) |
23 |
|
ineq2 |
⊢ ( 𝑣 = { 𝑦 } → ( { 𝑥 } ∩ 𝑣 ) = ( { 𝑥 } ∩ { 𝑦 } ) ) |
24 |
23
|
eqeq1d |
⊢ ( 𝑣 = { 𝑦 } → ( ( { 𝑥 } ∩ 𝑣 ) = ∅ ↔ ( { 𝑥 } ∩ { 𝑦 } ) = ∅ ) ) |
25 |
22 24
|
3anbi23d |
⊢ ( 𝑣 = { 𝑦 } → ( ( 𝑥 ∈ { 𝑥 } ∧ 𝑦 ∈ 𝑣 ∧ ( { 𝑥 } ∩ 𝑣 ) = ∅ ) ↔ ( 𝑥 ∈ { 𝑥 } ∧ 𝑦 ∈ { 𝑦 } ∧ ( { 𝑥 } ∩ { 𝑦 } ) = ∅ ) ) ) |
26 |
21 25
|
rspc2ev |
⊢ ( ( { 𝑥 } ∈ 𝒫 𝐴 ∧ { 𝑦 } ∈ 𝒫 𝐴 ∧ ( 𝑥 ∈ { 𝑥 } ∧ 𝑦 ∈ { 𝑦 } ∧ ( { 𝑥 } ∩ { 𝑦 } ) = ∅ ) ) → ∃ 𝑢 ∈ 𝒫 𝐴 ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
27 |
6 11 13 15 17 26
|
syl113anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑥 ≠ 𝑦 ) → ∃ 𝑢 ∈ 𝒫 𝐴 ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
28 |
27
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ≠ 𝑦 → ∃ 𝑢 ∈ 𝒫 𝐴 ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
29 |
28
|
ralrimivva |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑢 ∈ 𝒫 𝐴 ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) |
30 |
|
unipw |
⊢ ∪ 𝒫 𝐴 = 𝐴 |
31 |
30
|
eqcomi |
⊢ 𝐴 = ∪ 𝒫 𝐴 |
32 |
31
|
ishaus |
⊢ ( 𝒫 𝐴 ∈ Haus ↔ ( 𝒫 𝐴 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ∃ 𝑢 ∈ 𝒫 𝐴 ∃ 𝑣 ∈ 𝒫 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) ) |
33 |
1 29 32
|
sylanbrc |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Haus ) |