Metamath Proof Explorer


Theorem dishaus

Description: A discrete topology is Hausdorff. Morris, Topology without tears, p.72, ex. 13. (Contributed by FL, 24-Jun-2007) (Proof shortened by Mario Carneiro, 8-Apr-2015)

Ref Expression
Assertion dishaus ( 𝐴𝑉 → 𝒫 𝐴 ∈ Haus )

Proof

Step Hyp Ref Expression
1 distop ( 𝐴𝑉 → 𝒫 𝐴 ∈ Top )
2 simplrl ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑥𝑦 ) → 𝑥𝐴 )
3 2 snssd ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑥𝑦 ) → { 𝑥 } ⊆ 𝐴 )
4 snex { 𝑥 } ∈ V
5 4 elpw ( { 𝑥 } ∈ 𝒫 𝐴 ↔ { 𝑥 } ⊆ 𝐴 )
6 3 5 sylibr ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑥𝑦 ) → { 𝑥 } ∈ 𝒫 𝐴 )
7 simplrr ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑥𝑦 ) → 𝑦𝐴 )
8 7 snssd ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑥𝑦 ) → { 𝑦 } ⊆ 𝐴 )
9 snex { 𝑦 } ∈ V
10 9 elpw ( { 𝑦 } ∈ 𝒫 𝐴 ↔ { 𝑦 } ⊆ 𝐴 )
11 8 10 sylibr ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑥𝑦 ) → { 𝑦 } ∈ 𝒫 𝐴 )
12 vsnid 𝑥 ∈ { 𝑥 }
13 12 a1i ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑥𝑦 ) → 𝑥 ∈ { 𝑥 } )
14 vsnid 𝑦 ∈ { 𝑦 }
15 14 a1i ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑥𝑦 ) → 𝑦 ∈ { 𝑦 } )
16 disjsn2 ( 𝑥𝑦 → ( { 𝑥 } ∩ { 𝑦 } ) = ∅ )
17 16 adantl ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑥𝑦 ) → ( { 𝑥 } ∩ { 𝑦 } ) = ∅ )
18 eleq2 ( 𝑢 = { 𝑥 } → ( 𝑥𝑢𝑥 ∈ { 𝑥 } ) )
19 ineq1 ( 𝑢 = { 𝑥 } → ( 𝑢𝑣 ) = ( { 𝑥 } ∩ 𝑣 ) )
20 19 eqeq1d ( 𝑢 = { 𝑥 } → ( ( 𝑢𝑣 ) = ∅ ↔ ( { 𝑥 } ∩ 𝑣 ) = ∅ ) )
21 18 20 3anbi13d ( 𝑢 = { 𝑥 } → ( ( 𝑥𝑢𝑦𝑣 ∧ ( 𝑢𝑣 ) = ∅ ) ↔ ( 𝑥 ∈ { 𝑥 } ∧ 𝑦𝑣 ∧ ( { 𝑥 } ∩ 𝑣 ) = ∅ ) ) )
22 eleq2 ( 𝑣 = { 𝑦 } → ( 𝑦𝑣𝑦 ∈ { 𝑦 } ) )
23 ineq2 ( 𝑣 = { 𝑦 } → ( { 𝑥 } ∩ 𝑣 ) = ( { 𝑥 } ∩ { 𝑦 } ) )
24 23 eqeq1d ( 𝑣 = { 𝑦 } → ( ( { 𝑥 } ∩ 𝑣 ) = ∅ ↔ ( { 𝑥 } ∩ { 𝑦 } ) = ∅ ) )
25 22 24 3anbi23d ( 𝑣 = { 𝑦 } → ( ( 𝑥 ∈ { 𝑥 } ∧ 𝑦𝑣 ∧ ( { 𝑥 } ∩ 𝑣 ) = ∅ ) ↔ ( 𝑥 ∈ { 𝑥 } ∧ 𝑦 ∈ { 𝑦 } ∧ ( { 𝑥 } ∩ { 𝑦 } ) = ∅ ) ) )
26 21 25 rspc2ev ( ( { 𝑥 } ∈ 𝒫 𝐴 ∧ { 𝑦 } ∈ 𝒫 𝐴 ∧ ( 𝑥 ∈ { 𝑥 } ∧ 𝑦 ∈ { 𝑦 } ∧ ( { 𝑥 } ∩ { 𝑦 } ) = ∅ ) ) → ∃ 𝑢 ∈ 𝒫 𝐴𝑣 ∈ 𝒫 𝐴 ( 𝑥𝑢𝑦𝑣 ∧ ( 𝑢𝑣 ) = ∅ ) )
27 6 11 13 15 17 26 syl113anc ( ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝑦𝐴 ) ) ∧ 𝑥𝑦 ) → ∃ 𝑢 ∈ 𝒫 𝐴𝑣 ∈ 𝒫 𝐴 ( 𝑥𝑢𝑦𝑣 ∧ ( 𝑢𝑣 ) = ∅ ) )
28 27 ex ( ( 𝐴𝑉 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( 𝑥𝑦 → ∃ 𝑢 ∈ 𝒫 𝐴𝑣 ∈ 𝒫 𝐴 ( 𝑥𝑢𝑦𝑣 ∧ ( 𝑢𝑣 ) = ∅ ) ) )
29 28 ralrimivva ( 𝐴𝑉 → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ∃ 𝑢 ∈ 𝒫 𝐴𝑣 ∈ 𝒫 𝐴 ( 𝑥𝑢𝑦𝑣 ∧ ( 𝑢𝑣 ) = ∅ ) ) )
30 unipw 𝒫 𝐴 = 𝐴
31 30 eqcomi 𝐴 = 𝒫 𝐴
32 31 ishaus ( 𝒫 𝐴 ∈ Haus ↔ ( 𝒫 𝐴 ∈ Top ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ∃ 𝑢 ∈ 𝒫 𝐴𝑣 ∈ 𝒫 𝐴 ( 𝑥𝑢𝑦𝑣 ∧ ( 𝑢𝑣 ) = ∅ ) ) ) )
33 1 29 32 sylanbrc ( 𝐴𝑉 → 𝒫 𝐴 ∈ Haus )