| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-in |
⊢ ( 𝐴 ∩ 𝐵 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } |
| 2 |
1
|
eqeq1i |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } = ∅ ) |
| 3 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
| 4 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
| 5 |
3 4
|
anbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 6 |
5
|
eqabcbw |
⊢ ( { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } = ∅ ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ) |
| 7 |
|
imnan |
⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
| 8 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
| 9 |
8
|
nbn |
⊢ ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ) |
| 10 |
7 9
|
bitr2i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ↔ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 11 |
10
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 12 |
2 6 11
|
3bitri |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 13 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 14 |
12 13
|
bitr4i |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |