Step |
Hyp |
Ref |
Expression |
1 |
|
df-in |
⊢ ( 𝐴 ∩ 𝐵 ) = { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) } |
2 |
1
|
eqeq1i |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) } = ∅ ) |
3 |
|
dfcleq |
⊢ ( ∅ = { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) } ↔ ∀ 𝑥 ( 𝑥 ∈ ∅ ↔ 𝑥 ∈ { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) } ) ) |
4 |
|
df-clab |
⊢ ( 𝑥 ∈ { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) } ↔ [ 𝑥 / 𝑧 ] ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) |
5 |
|
sb6 |
⊢ ( [ 𝑥 / 𝑧 ] ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ↔ ∀ 𝑧 ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ) |
6 |
|
id |
⊢ ( 𝑧 = 𝑥 → 𝑧 = 𝑥 ) |
7 |
|
eleq1w |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
8 |
7
|
biimpd |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
9 |
|
eleq1w |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
10 |
9
|
biimpd |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐵 → 𝑥 ∈ 𝐵 ) ) |
11 |
8 10
|
anim12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) |
12 |
6 11
|
embantd |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) |
13 |
12
|
spimvw |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
14 |
|
eleq1a |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝑥 → 𝑧 ∈ 𝐴 ) ) |
15 |
|
eleq1a |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑧 = 𝑥 → 𝑧 ∈ 𝐵 ) ) |
16 |
14 15
|
anim12ii |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ) |
17 |
16
|
alrimiv |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑧 ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ) |
18 |
13 17
|
impbii |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
19 |
4 5 18
|
3bitri |
⊢ ( 𝑥 ∈ { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
20 |
19
|
bibi2i |
⊢ ( ( 𝑥 ∈ ∅ ↔ 𝑥 ∈ { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) } ) ↔ ( 𝑥 ∈ ∅ ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) |
21 |
20
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ∅ ↔ 𝑥 ∈ { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) } ) ↔ ∀ 𝑥 ( 𝑥 ∈ ∅ ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) |
22 |
3 21
|
bitri |
⊢ ( ∅ = { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) } ↔ ∀ 𝑥 ( 𝑥 ∈ ∅ ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) |
23 |
|
eqcom |
⊢ ( { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) } = ∅ ↔ ∅ = { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) } ) |
24 |
|
bicom |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ↔ ( 𝑥 ∈ ∅ ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) |
25 |
24
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ↔ ∀ 𝑥 ( 𝑥 ∈ ∅ ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) |
26 |
22 23 25
|
3bitr4i |
⊢ ( { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) } = ∅ ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ) |
27 |
|
imnan |
⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
28 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
29 |
28
|
nbn |
⊢ ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ) |
30 |
27 29
|
bitr2i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ↔ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
31 |
30
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
32 |
2 26 31
|
3bitri |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
33 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
34 |
32 33
|
bitr4i |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |