Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | disj1 | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) | |
2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) | |
3 | 1 2 | bitri | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |