Step |
Hyp |
Ref |
Expression |
1 |
|
pm4.71 |
⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
2 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
3 |
2
|
bibi2i |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
4 |
1 3
|
bitr4i |
⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
5 |
4
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
6 |
|
disj1 |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
7 |
|
dfcleq |
⊢ ( 𝐴 = ( 𝐴 ∖ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
8 |
5 6 7
|
3bitr4i |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ 𝐴 = ( 𝐴 ∖ 𝐵 ) ) |