Metamath Proof Explorer


Theorem disj3

Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998)

Ref Expression
Assertion disj3 ( ( 𝐴𝐵 ) = ∅ ↔ 𝐴 = ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 pm4.71 ( ( 𝑥𝐴 → ¬ 𝑥𝐵 ) ↔ ( 𝑥𝐴 ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ) )
2 eldif ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )
3 2 bibi2i ( ( 𝑥𝐴𝑥 ∈ ( 𝐴𝐵 ) ) ↔ ( 𝑥𝐴 ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ) )
4 1 3 bitr4i ( ( 𝑥𝐴 → ¬ 𝑥𝐵 ) ↔ ( 𝑥𝐴𝑥 ∈ ( 𝐴𝐵 ) ) )
5 4 albii ( ∀ 𝑥 ( 𝑥𝐴 → ¬ 𝑥𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ( 𝐴𝐵 ) ) )
6 disj1 ( ( 𝐴𝐵 ) = ∅ ↔ ∀ 𝑥 ( 𝑥𝐴 → ¬ 𝑥𝐵 ) )
7 dfcleq ( 𝐴 = ( 𝐴𝐵 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ( 𝐴𝐵 ) ) )
8 5 6 7 3bitr4i ( ( 𝐴𝐵 ) = ∅ ↔ 𝐴 = ( 𝐴𝐵 ) )