Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | disj4 | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ¬ ( 𝐴 ∖ 𝐵 ) ⊊ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj3 | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ 𝐴 = ( 𝐴 ∖ 𝐵 ) ) | |
2 | eqcom | ⊢ ( 𝐴 = ( 𝐴 ∖ 𝐵 ) ↔ ( 𝐴 ∖ 𝐵 ) = 𝐴 ) | |
3 | difss | ⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 | |
4 | dfpss2 | ⊢ ( ( 𝐴 ∖ 𝐵 ) ⊊ 𝐴 ↔ ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ ¬ ( 𝐴 ∖ 𝐵 ) = 𝐴 ) ) | |
5 | 3 4 | mpbiran | ⊢ ( ( 𝐴 ∖ 𝐵 ) ⊊ 𝐴 ↔ ¬ ( 𝐴 ∖ 𝐵 ) = 𝐴 ) |
6 | 5 | con2bii | ⊢ ( ( 𝐴 ∖ 𝐵 ) = 𝐴 ↔ ¬ ( 𝐴 ∖ 𝐵 ) ⊊ 𝐴 ) |
7 | 1 2 6 | 3bitri | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ¬ ( 𝐴 ∖ 𝐵 ) ⊊ 𝐴 ) |