Metamath Proof Explorer


Theorem disjOLD

Description: Obsolete version of disj as of 28-Jun-2024. (Contributed by NM, 17-Feb-2004) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion disjOLD ( ( 𝐴𝐵 ) = ∅ ↔ ∀ 𝑥𝐴 ¬ 𝑥𝐵 )

Proof

Step Hyp Ref Expression
1 df-in ( 𝐴𝐵 ) = { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) }
2 1 eqeq1i ( ( 𝐴𝐵 ) = ∅ ↔ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } = ∅ )
3 abeq1 ( { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } = ∅ ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥𝐵 ) ↔ 𝑥 ∈ ∅ ) )
4 imnan ( ( 𝑥𝐴 → ¬ 𝑥𝐵 ) ↔ ¬ ( 𝑥𝐴𝑥𝐵 ) )
5 noel ¬ 𝑥 ∈ ∅
6 5 nbn ( ¬ ( 𝑥𝐴𝑥𝐵 ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) ↔ 𝑥 ∈ ∅ ) )
7 4 6 bitr2i ( ( ( 𝑥𝐴𝑥𝐵 ) ↔ 𝑥 ∈ ∅ ) ↔ ( 𝑥𝐴 → ¬ 𝑥𝐵 ) )
8 7 albii ( ∀ 𝑥 ( ( 𝑥𝐴𝑥𝐵 ) ↔ 𝑥 ∈ ∅ ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ¬ 𝑥𝐵 ) )
9 2 3 8 3bitri ( ( 𝐴𝐵 ) = ∅ ↔ ∀ 𝑥 ( 𝑥𝐴 → ¬ 𝑥𝐵 ) )
10 df-ral ( ∀ 𝑥𝐴 ¬ 𝑥𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴 → ¬ 𝑥𝐵 ) )
11 9 10 bitr4i ( ( 𝐴𝐵 ) = ∅ ↔ ∀ 𝑥𝐴 ¬ 𝑥𝐵 )