Step |
Hyp |
Ref |
Expression |
1 |
|
df-in |
⊢ ( 𝐴 ∩ 𝐵 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) } |
2 |
1
|
eqeq1i |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) } = ∅ ) |
3 |
|
abeq1 |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) } = ∅ ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ) |
4 |
|
imnan |
⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
5 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
6 |
5
|
nbn |
⊢ ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ) |
7 |
4 6
|
bitr2i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ↔ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
8 |
7
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
9 |
2 3 8
|
3bitri |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
10 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
11 |
9 10
|
bitr4i |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |