Step |
Hyp |
Ref |
Expression |
1 |
|
nfdisj1 |
⊢ Ⅎ 𝑥 Disj 𝑥 ∈ 𝐴 𝐵 |
2 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
3 |
|
nfv |
⊢ Ⅎ 𝑥 𝑖 ∈ 𝐴 |
4 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑖 / 𝑥 ⦌ 𝐵 |
5 |
4
|
nfcri |
⊢ Ⅎ 𝑥 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 |
6 |
3 5
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) |
7 |
6
|
nfab |
⊢ Ⅎ 𝑥 { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } |
8 |
7
|
nfuni |
⊢ Ⅎ 𝑥 ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } |
9 |
8
|
nfcsb1 |
⊢ Ⅎ 𝑥 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 |
10 |
9
|
nfeq1 |
⊢ Ⅎ 𝑥 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝑦 |
11 |
2 10
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑗 ∈ 𝑦 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝑦 |
12 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝑦 ↔ ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
13 |
12
|
raleqbi1dv |
⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑗 ∈ 𝑦 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝑦 ↔ ∀ 𝑗 ∈ 𝐵 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
14 |
|
vex |
⊢ 𝑦 ∈ V |
15 |
14
|
a1i |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ V ) |
16 |
|
simplll |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) → Disj 𝑥 ∈ 𝐴 𝐵 ) |
17 |
|
simpllr |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) → 𝑥 ∈ 𝐴 ) |
18 |
|
simprl |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) → 𝑖 ∈ 𝐴 ) |
19 |
|
simplr |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) → 𝑗 ∈ 𝐵 ) |
20 |
|
simprr |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) → 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) |
21 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑖 → 𝐵 = ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) |
22 |
4 21
|
disjif |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ 𝐵 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) → 𝑥 = 𝑖 ) |
23 |
16 17 18 19 20 22
|
syl122anc |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) → 𝑥 = 𝑖 ) |
24 |
|
simpr |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑥 = 𝑖 ) → 𝑥 = 𝑖 ) |
25 |
|
simpllr |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑥 = 𝑖 ) → 𝑥 ∈ 𝐴 ) |
26 |
24 25
|
eqeltrrd |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑥 = 𝑖 ) → 𝑖 ∈ 𝐴 ) |
27 |
|
simplr |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑥 = 𝑖 ) → 𝑗 ∈ 𝐵 ) |
28 |
21
|
eleq2d |
⊢ ( 𝑥 = 𝑖 → ( 𝑗 ∈ 𝐵 ↔ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) |
29 |
24 28
|
syl |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑥 = 𝑖 ) → ( 𝑗 ∈ 𝐵 ↔ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) |
30 |
27 29
|
mpbid |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑥 = 𝑖 ) → 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) |
31 |
26 30
|
jca |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑥 = 𝑖 ) → ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) |
32 |
23 31
|
impbida |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ↔ 𝑥 = 𝑖 ) ) |
33 |
|
equcom |
⊢ ( 𝑥 = 𝑖 ↔ 𝑖 = 𝑥 ) |
34 |
32 33
|
bitrdi |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ↔ 𝑖 = 𝑥 ) ) |
35 |
34
|
abbidv |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) → { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } = { 𝑖 ∣ 𝑖 = 𝑥 } ) |
36 |
|
df-sn |
⊢ { 𝑥 } = { 𝑖 ∣ 𝑖 = 𝑥 } |
37 |
35 36
|
eqtr4di |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) → { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } = { 𝑥 } ) |
38 |
37
|
unieqd |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) → ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } = ∪ { 𝑥 } ) |
39 |
|
vex |
⊢ 𝑥 ∈ V |
40 |
39
|
unisn |
⊢ ∪ { 𝑥 } = 𝑥 |
41 |
38 40
|
eqtrdi |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) → ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } = 𝑥 ) |
42 |
|
csbeq1 |
⊢ ( ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } = 𝑥 → ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = ⦋ 𝑥 / 𝑥 ⦌ 𝐵 ) |
43 |
|
csbid |
⊢ ⦋ 𝑥 / 𝑥 ⦌ 𝐵 = 𝐵 |
44 |
42 43
|
eqtrdi |
⊢ ( ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } = 𝑥 → ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝐵 ) |
45 |
41 44
|
syl |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) → ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝐵 ) |
46 |
45
|
ralrimiva |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑗 ∈ 𝐵 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝐵 ) |
47 |
1 11 13 15 46
|
elabreximd |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → ∀ 𝑗 ∈ 𝑦 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝑦 ) |
48 |
47
|
ralrimiva |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ∀ 𝑗 ∈ 𝑦 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝑦 ) |
49 |
|
invdisj |
⊢ ( ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ∀ 𝑗 ∈ 𝑦 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝑦 → Disj 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑦 ) |
50 |
48 49
|
syl |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑦 ) |