Step |
Hyp |
Ref |
Expression |
1 |
|
disjabrexf.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
nfdisj1 |
⊢ Ⅎ 𝑥 Disj 𝑥 ∈ 𝐴 𝐵 |
3 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
4 |
1
|
nfcri |
⊢ Ⅎ 𝑥 𝑖 ∈ 𝐴 |
5 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑖 / 𝑥 ⦌ 𝐵 |
6 |
5
|
nfcri |
⊢ Ⅎ 𝑥 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 |
7 |
4 6
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) |
8 |
7
|
nfab |
⊢ Ⅎ 𝑥 { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } |
9 |
8
|
nfuni |
⊢ Ⅎ 𝑥 ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } |
10 |
9
|
nfcsb1 |
⊢ Ⅎ 𝑥 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 |
11 |
10
|
nfeq1 |
⊢ Ⅎ 𝑥 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝑦 |
12 |
3 11
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑗 ∈ 𝑦 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝑦 |
13 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝑦 ↔ ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
14 |
13
|
raleqbi1dv |
⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑗 ∈ 𝑦 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝑦 ↔ ∀ 𝑗 ∈ 𝐵 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
15 |
|
vex |
⊢ 𝑦 ∈ V |
16 |
15
|
a1i |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ V ) |
17 |
|
simplll |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) → Disj 𝑥 ∈ 𝐴 𝐵 ) |
18 |
|
simpllr |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) → 𝑥 ∈ 𝐴 ) |
19 |
|
simprl |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) → 𝑖 ∈ 𝐴 ) |
20 |
|
simplr |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) → 𝑗 ∈ 𝐵 ) |
21 |
|
simprr |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) → 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) |
22 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑖 → 𝐵 = ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) |
23 |
1 5 22
|
disjif2 |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑖 ∈ 𝐴 ) ∧ ( 𝑗 ∈ 𝐵 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) → 𝑥 = 𝑖 ) |
24 |
17 18 19 20 21 23
|
syl122anc |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) → 𝑥 = 𝑖 ) |
25 |
|
simpr |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑥 = 𝑖 ) → 𝑥 = 𝑖 ) |
26 |
|
simpllr |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑥 = 𝑖 ) → 𝑥 ∈ 𝐴 ) |
27 |
25 26
|
eqeltrrd |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑥 = 𝑖 ) → 𝑖 ∈ 𝐴 ) |
28 |
|
simplr |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑥 = 𝑖 ) → 𝑗 ∈ 𝐵 ) |
29 |
22
|
eleq2d |
⊢ ( 𝑥 = 𝑖 → ( 𝑗 ∈ 𝐵 ↔ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) |
30 |
25 29
|
syl |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑥 = 𝑖 ) → ( 𝑗 ∈ 𝐵 ↔ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) |
31 |
28 30
|
mpbid |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑥 = 𝑖 ) → 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) |
32 |
27 31
|
jca |
⊢ ( ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑥 = 𝑖 ) → ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ) |
33 |
24 32
|
impbida |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ↔ 𝑥 = 𝑖 ) ) |
34 |
|
equcom |
⊢ ( 𝑥 = 𝑖 ↔ 𝑖 = 𝑥 ) |
35 |
33 34
|
bitrdi |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) ↔ 𝑖 = 𝑥 ) ) |
36 |
35
|
abbidv |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) → { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } = { 𝑖 ∣ 𝑖 = 𝑥 } ) |
37 |
|
df-sn |
⊢ { 𝑥 } = { 𝑖 ∣ 𝑖 = 𝑥 } |
38 |
36 37
|
eqtr4di |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) → { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } = { 𝑥 } ) |
39 |
38
|
unieqd |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) → ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } = ∪ { 𝑥 } ) |
40 |
|
vex |
⊢ 𝑥 ∈ V |
41 |
40
|
unisn |
⊢ ∪ { 𝑥 } = 𝑥 |
42 |
39 41
|
eqtrdi |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) → ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } = 𝑥 ) |
43 |
|
csbeq1 |
⊢ ( ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } = 𝑥 → ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = ⦋ 𝑥 / 𝑥 ⦌ 𝐵 ) |
44 |
|
csbid |
⊢ ⦋ 𝑥 / 𝑥 ⦌ 𝐵 = 𝐵 |
45 |
43 44
|
eqtrdi |
⊢ ( ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } = 𝑥 → ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝐵 ) |
46 |
42 45
|
syl |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑗 ∈ 𝐵 ) → ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝐵 ) |
47 |
46
|
ralrimiva |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑗 ∈ 𝐵 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝐵 ) |
48 |
2 12 14 16 47
|
elabreximd |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → ∀ 𝑗 ∈ 𝑦 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝑦 ) |
49 |
48
|
ralrimiva |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ∀ 𝑗 ∈ 𝑦 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝑦 ) |
50 |
|
invdisj |
⊢ ( ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ∀ 𝑗 ∈ 𝑦 ⦋ ∪ { 𝑖 ∣ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) } / 𝑥 ⦌ 𝐵 = 𝑦 → Disj 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑦 ) |
51 |
49 50
|
syl |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑦 ) |