Step |
Hyp |
Ref |
Expression |
1 |
|
disjxsn |
⊢ Disj 𝑥 ∈ { ∅ } 𝑥 |
2 |
|
simpr |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) |
3 |
|
eqidd |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐵 = ∅ ) → ∅ = ∅ ) |
4 |
|
id |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ 𝑊 ) |
5 |
|
0ex |
⊢ ∅ ∈ V |
6 |
5
|
a1i |
⊢ ( 𝐵 ∈ 𝑊 → ∅ ∈ V ) |
7 |
4 6
|
preqsnd |
⊢ ( 𝐵 ∈ 𝑊 → ( { 𝐵 , ∅ } = { ∅ } ↔ ( 𝐵 = ∅ ∧ ∅ = ∅ ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐵 = ∅ ) → ( { 𝐵 , ∅ } = { ∅ } ↔ ( 𝐵 = ∅ ∧ ∅ = ∅ ) ) ) |
9 |
2 3 8
|
mpbir2and |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐵 = ∅ ) → { 𝐵 , ∅ } = { ∅ } ) |
10 |
9
|
disjeq1d |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐵 = ∅ ) → ( Disj 𝑥 ∈ { 𝐵 , ∅ } 𝑥 ↔ Disj 𝑥 ∈ { ∅ } 𝑥 ) ) |
11 |
1 10
|
mpbiri |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐵 = ∅ ) → Disj 𝑥 ∈ { 𝐵 , ∅ } 𝑥 ) |
12 |
|
in0 |
⊢ ( 𝐵 ∩ ∅ ) = ∅ |
13 |
|
elex |
⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) |
14 |
13
|
adantr |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅ ) → 𝐵 ∈ V ) |
15 |
5
|
a1i |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅ ) → ∅ ∈ V ) |
16 |
|
simpr |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅ ) → 𝐵 ≠ ∅ ) |
17 |
|
id |
⊢ ( 𝑥 = 𝐵 → 𝑥 = 𝐵 ) |
18 |
|
id |
⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) |
19 |
17 18
|
disjprg |
⊢ ( ( 𝐵 ∈ V ∧ ∅ ∈ V ∧ 𝐵 ≠ ∅ ) → ( Disj 𝑥 ∈ { 𝐵 , ∅ } 𝑥 ↔ ( 𝐵 ∩ ∅ ) = ∅ ) ) |
20 |
14 15 16 19
|
syl3anc |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅ ) → ( Disj 𝑥 ∈ { 𝐵 , ∅ } 𝑥 ↔ ( 𝐵 ∩ ∅ ) = ∅ ) ) |
21 |
12 20
|
mpbiri |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅ ) → Disj 𝑥 ∈ { 𝐵 , ∅ } 𝑥 ) |
22 |
11 21
|
pm2.61dane |
⊢ ( 𝐵 ∈ 𝑊 → Disj 𝑥 ∈ { 𝐵 , ∅ } 𝑥 ) |
23 |
22
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 = ∅ ) → Disj 𝑥 ∈ { 𝐵 , ∅ } 𝑥 ) |
24 |
|
difeq2 |
⊢ ( 𝐴 = ∅ → ( 𝐵 ∖ 𝐴 ) = ( 𝐵 ∖ ∅ ) ) |
25 |
|
dif0 |
⊢ ( 𝐵 ∖ ∅ ) = 𝐵 |
26 |
24 25
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 𝐵 ∖ 𝐴 ) = 𝐵 ) |
27 |
|
id |
⊢ ( 𝐴 = ∅ → 𝐴 = ∅ ) |
28 |
26 27
|
preq12d |
⊢ ( 𝐴 = ∅ → { ( 𝐵 ∖ 𝐴 ) , 𝐴 } = { 𝐵 , ∅ } ) |
29 |
28
|
disjeq1d |
⊢ ( 𝐴 = ∅ → ( Disj 𝑥 ∈ { ( 𝐵 ∖ 𝐴 ) , 𝐴 } 𝑥 ↔ Disj 𝑥 ∈ { 𝐵 , ∅ } 𝑥 ) ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 = ∅ ) → ( Disj 𝑥 ∈ { ( 𝐵 ∖ 𝐴 ) , 𝐴 } 𝑥 ↔ Disj 𝑥 ∈ { 𝐵 , ∅ } 𝑥 ) ) |
31 |
23 30
|
mpbird |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 = ∅ ) → Disj 𝑥 ∈ { ( 𝐵 ∖ 𝐴 ) , 𝐴 } 𝑥 ) |
32 |
|
disjdifr |
⊢ ( ( 𝐵 ∖ 𝐴 ) ∩ 𝐴 ) = ∅ |
33 |
|
difexg |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝐵 ∖ 𝐴 ) ∈ V ) |
34 |
33
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 = ∅ ) → ( 𝐵 ∖ 𝐴 ) ∈ V ) |
35 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 = ∅ ) → 𝐴 ∈ V ) |
37 |
|
ssid |
⊢ ( 𝐵 ∖ 𝐴 ) ⊆ ( 𝐵 ∖ 𝐴 ) |
38 |
|
ssdifeq0 |
⊢ ( 𝐴 ⊆ ( 𝐵 ∖ 𝐴 ) ↔ 𝐴 = ∅ ) |
39 |
38
|
notbii |
⊢ ( ¬ 𝐴 ⊆ ( 𝐵 ∖ 𝐴 ) ↔ ¬ 𝐴 = ∅ ) |
40 |
|
nssne2 |
⊢ ( ( ( 𝐵 ∖ 𝐴 ) ⊆ ( 𝐵 ∖ 𝐴 ) ∧ ¬ 𝐴 ⊆ ( 𝐵 ∖ 𝐴 ) ) → ( 𝐵 ∖ 𝐴 ) ≠ 𝐴 ) |
41 |
39 40
|
sylan2br |
⊢ ( ( ( 𝐵 ∖ 𝐴 ) ⊆ ( 𝐵 ∖ 𝐴 ) ∧ ¬ 𝐴 = ∅ ) → ( 𝐵 ∖ 𝐴 ) ≠ 𝐴 ) |
42 |
37 41
|
mpan |
⊢ ( ¬ 𝐴 = ∅ → ( 𝐵 ∖ 𝐴 ) ≠ 𝐴 ) |
43 |
42
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 = ∅ ) → ( 𝐵 ∖ 𝐴 ) ≠ 𝐴 ) |
44 |
|
id |
⊢ ( 𝑥 = ( 𝐵 ∖ 𝐴 ) → 𝑥 = ( 𝐵 ∖ 𝐴 ) ) |
45 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
46 |
44 45
|
disjprg |
⊢ ( ( ( 𝐵 ∖ 𝐴 ) ∈ V ∧ 𝐴 ∈ V ∧ ( 𝐵 ∖ 𝐴 ) ≠ 𝐴 ) → ( Disj 𝑥 ∈ { ( 𝐵 ∖ 𝐴 ) , 𝐴 } 𝑥 ↔ ( ( 𝐵 ∖ 𝐴 ) ∩ 𝐴 ) = ∅ ) ) |
47 |
34 36 43 46
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 = ∅ ) → ( Disj 𝑥 ∈ { ( 𝐵 ∖ 𝐴 ) , 𝐴 } 𝑥 ↔ ( ( 𝐵 ∖ 𝐴 ) ∩ 𝐴 ) = ∅ ) ) |
48 |
32 47
|
mpbiri |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ¬ 𝐴 = ∅ ) → Disj 𝑥 ∈ { ( 𝐵 ∖ 𝐴 ) , 𝐴 } 𝑥 ) |
49 |
31 48
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → Disj 𝑥 ∈ { ( 𝐵 ∖ 𝐴 ) , 𝐴 } 𝑥 ) |