| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							disjxsn | 
							⊢ Disj  𝑥  ∈  { ∅ } 𝑥  | 
						
						
							| 2 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐵  =  ∅ )  →  𝐵  =  ∅ )  | 
						
						
							| 3 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐵  =  ∅ )  →  ∅  =  ∅ )  | 
						
						
							| 4 | 
							
								
							 | 
							id | 
							⊢ ( 𝐵  ∈  𝑊  →  𝐵  ∈  𝑊 )  | 
						
						
							| 5 | 
							
								
							 | 
							0ex | 
							⊢ ∅  ∈  V  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( 𝐵  ∈  𝑊  →  ∅  ∈  V )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							preqsnd | 
							⊢ ( 𝐵  ∈  𝑊  →  ( { 𝐵 ,  ∅ }  =  { ∅ }  ↔  ( 𝐵  =  ∅  ∧  ∅  =  ∅ ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐵  =  ∅ )  →  ( { 𝐵 ,  ∅ }  =  { ∅ }  ↔  ( 𝐵  =  ∅  ∧  ∅  =  ∅ ) ) )  | 
						
						
							| 9 | 
							
								2 3 8
							 | 
							mpbir2and | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐵  =  ∅ )  →  { 𝐵 ,  ∅ }  =  { ∅ } )  | 
						
						
							| 10 | 
							
								9
							 | 
							disjeq1d | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐵  =  ∅ )  →  ( Disj  𝑥  ∈  { 𝐵 ,  ∅ } 𝑥  ↔  Disj  𝑥  ∈  { ∅ } 𝑥 ) )  | 
						
						
							| 11 | 
							
								1 10
							 | 
							mpbiri | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐵  =  ∅ )  →  Disj  𝑥  ∈  { 𝐵 ,  ∅ } 𝑥 )  | 
						
						
							| 12 | 
							
								
							 | 
							in0 | 
							⊢ ( 𝐵  ∩  ∅ )  =  ∅  | 
						
						
							| 13 | 
							
								
							 | 
							elex | 
							⊢ ( 𝐵  ∈  𝑊  →  𝐵  ∈  V )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐵  ≠  ∅ )  →  𝐵  ∈  V )  | 
						
						
							| 15 | 
							
								5
							 | 
							a1i | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐵  ≠  ∅ )  →  ∅  ∈  V )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐵  ≠  ∅ )  →  𝐵  ≠  ∅ )  | 
						
						
							| 17 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  𝐵  →  𝑥  =  𝐵 )  | 
						
						
							| 18 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  ∅  →  𝑥  =  ∅ )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							disjprg | 
							⊢ ( ( 𝐵  ∈  V  ∧  ∅  ∈  V  ∧  𝐵  ≠  ∅ )  →  ( Disj  𝑥  ∈  { 𝐵 ,  ∅ } 𝑥  ↔  ( 𝐵  ∩  ∅ )  =  ∅ ) )  | 
						
						
							| 20 | 
							
								14 15 16 19
							 | 
							syl3anc | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐵  ≠  ∅ )  →  ( Disj  𝑥  ∈  { 𝐵 ,  ∅ } 𝑥  ↔  ( 𝐵  ∩  ∅ )  =  ∅ ) )  | 
						
						
							| 21 | 
							
								12 20
							 | 
							mpbiri | 
							⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐵  ≠  ∅ )  →  Disj  𝑥  ∈  { 𝐵 ,  ∅ } 𝑥 )  | 
						
						
							| 22 | 
							
								11 21
							 | 
							pm2.61dane | 
							⊢ ( 𝐵  ∈  𝑊  →  Disj  𝑥  ∈  { 𝐵 ,  ∅ } 𝑥 )  | 
						
						
							| 23 | 
							
								22
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  𝐴  =  ∅ )  →  Disj  𝑥  ∈  { 𝐵 ,  ∅ } 𝑥 )  | 
						
						
							| 24 | 
							
								
							 | 
							difeq2 | 
							⊢ ( 𝐴  =  ∅  →  ( 𝐵  ∖  𝐴 )  =  ( 𝐵  ∖  ∅ ) )  | 
						
						
							| 25 | 
							
								
							 | 
							dif0 | 
							⊢ ( 𝐵  ∖  ∅ )  =  𝐵  | 
						
						
							| 26 | 
							
								24 25
							 | 
							eqtrdi | 
							⊢ ( 𝐴  =  ∅  →  ( 𝐵  ∖  𝐴 )  =  𝐵 )  | 
						
						
							| 27 | 
							
								
							 | 
							id | 
							⊢ ( 𝐴  =  ∅  →  𝐴  =  ∅ )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							preq12d | 
							⊢ ( 𝐴  =  ∅  →  { ( 𝐵  ∖  𝐴 ) ,  𝐴 }  =  { 𝐵 ,  ∅ } )  | 
						
						
							| 29 | 
							
								28
							 | 
							disjeq1d | 
							⊢ ( 𝐴  =  ∅  →  ( Disj  𝑥  ∈  { ( 𝐵  ∖  𝐴 ) ,  𝐴 } 𝑥  ↔  Disj  𝑥  ∈  { 𝐵 ,  ∅ } 𝑥 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantl | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  𝐴  =  ∅ )  →  ( Disj  𝑥  ∈  { ( 𝐵  ∖  𝐴 ) ,  𝐴 } 𝑥  ↔  Disj  𝑥  ∈  { 𝐵 ,  ∅ } 𝑥 ) )  | 
						
						
							| 31 | 
							
								23 30
							 | 
							mpbird | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  𝐴  =  ∅ )  →  Disj  𝑥  ∈  { ( 𝐵  ∖  𝐴 ) ,  𝐴 } 𝑥 )  | 
						
						
							| 32 | 
							
								
							 | 
							disjdifr | 
							⊢ ( ( 𝐵  ∖  𝐴 )  ∩  𝐴 )  =  ∅  | 
						
						
							| 33 | 
							
								
							 | 
							difexg | 
							⊢ ( 𝐵  ∈  𝑊  →  ( 𝐵  ∖  𝐴 )  ∈  V )  | 
						
						
							| 34 | 
							
								33
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  ¬  𝐴  =  ∅ )  →  ( 𝐵  ∖  𝐴 )  ∈  V )  | 
						
						
							| 35 | 
							
								
							 | 
							elex | 
							⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  V )  | 
						
						
							| 36 | 
							
								35
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  ¬  𝐴  =  ∅ )  →  𝐴  ∈  V )  | 
						
						
							| 37 | 
							
								
							 | 
							ssid | 
							⊢ ( 𝐵  ∖  𝐴 )  ⊆  ( 𝐵  ∖  𝐴 )  | 
						
						
							| 38 | 
							
								
							 | 
							ssdifeq0 | 
							⊢ ( 𝐴  ⊆  ( 𝐵  ∖  𝐴 )  ↔  𝐴  =  ∅ )  | 
						
						
							| 39 | 
							
								38
							 | 
							notbii | 
							⊢ ( ¬  𝐴  ⊆  ( 𝐵  ∖  𝐴 )  ↔  ¬  𝐴  =  ∅ )  | 
						
						
							| 40 | 
							
								
							 | 
							nssne2 | 
							⊢ ( ( ( 𝐵  ∖  𝐴 )  ⊆  ( 𝐵  ∖  𝐴 )  ∧  ¬  𝐴  ⊆  ( 𝐵  ∖  𝐴 ) )  →  ( 𝐵  ∖  𝐴 )  ≠  𝐴 )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							sylan2br | 
							⊢ ( ( ( 𝐵  ∖  𝐴 )  ⊆  ( 𝐵  ∖  𝐴 )  ∧  ¬  𝐴  =  ∅ )  →  ( 𝐵  ∖  𝐴 )  ≠  𝐴 )  | 
						
						
							| 42 | 
							
								37 41
							 | 
							mpan | 
							⊢ ( ¬  𝐴  =  ∅  →  ( 𝐵  ∖  𝐴 )  ≠  𝐴 )  | 
						
						
							| 43 | 
							
								42
							 | 
							adantl | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  ¬  𝐴  =  ∅ )  →  ( 𝐵  ∖  𝐴 )  ≠  𝐴 )  | 
						
						
							| 44 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  ( 𝐵  ∖  𝐴 )  →  𝑥  =  ( 𝐵  ∖  𝐴 ) )  | 
						
						
							| 45 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							disjprg | 
							⊢ ( ( ( 𝐵  ∖  𝐴 )  ∈  V  ∧  𝐴  ∈  V  ∧  ( 𝐵  ∖  𝐴 )  ≠  𝐴 )  →  ( Disj  𝑥  ∈  { ( 𝐵  ∖  𝐴 ) ,  𝐴 } 𝑥  ↔  ( ( 𝐵  ∖  𝐴 )  ∩  𝐴 )  =  ∅ ) )  | 
						
						
							| 47 | 
							
								34 36 43 46
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  ¬  𝐴  =  ∅ )  →  ( Disj  𝑥  ∈  { ( 𝐵  ∖  𝐴 ) ,  𝐴 } 𝑥  ↔  ( ( 𝐵  ∖  𝐴 )  ∩  𝐴 )  =  ∅ ) )  | 
						
						
							| 48 | 
							
								32 47
							 | 
							mpbiri | 
							⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  ∧  ¬  𝐴  =  ∅ )  →  Disj  𝑥  ∈  { ( 𝐵  ∖  𝐴 ) ,  𝐴 } 𝑥 )  | 
						
						
							| 49 | 
							
								31 48
							 | 
							pm2.61dan | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  Disj  𝑥  ∈  { ( 𝐵  ∖  𝐴 ) ,  𝐴 } 𝑥 )  |