Step |
Hyp |
Ref |
Expression |
1 |
|
inex1g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
2 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
3 |
|
disjdifprg |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ V ∧ 𝐴 ∈ V ) → Disj 𝑥 ∈ { ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) , ( 𝐴 ∩ 𝐵 ) } 𝑥 ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → Disj 𝑥 ∈ { ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) , ( 𝐴 ∩ 𝐵 ) } 𝑥 ) |
5 |
|
difin |
⊢ ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) |
6 |
5
|
preq1i |
⊢ { ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) , ( 𝐴 ∩ 𝐵 ) } = { ( 𝐴 ∖ 𝐵 ) , ( 𝐴 ∩ 𝐵 ) } |
7 |
6
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → { ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) , ( 𝐴 ∩ 𝐵 ) } = { ( 𝐴 ∖ 𝐵 ) , ( 𝐴 ∩ 𝐵 ) } ) |
8 |
7
|
disjeq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( Disj 𝑥 ∈ { ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) , ( 𝐴 ∩ 𝐵 ) } 𝑥 ↔ Disj 𝑥 ∈ { ( 𝐴 ∖ 𝐵 ) , ( 𝐴 ∩ 𝐵 ) } 𝑥 ) ) |
9 |
4 8
|
mpbid |
⊢ ( 𝐴 ∈ 𝑉 → Disj 𝑥 ∈ { ( 𝐴 ∖ 𝐵 ) , ( 𝐴 ∩ 𝐵 ) } 𝑥 ) |