| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							inex1g | 
							⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∩  𝐵 )  ∈  V )  | 
						
						
							| 2 | 
							
								
							 | 
							elex | 
							⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  V )  | 
						
						
							| 3 | 
							
								
							 | 
							disjdifprg | 
							⊢ ( ( ( 𝐴  ∩  𝐵 )  ∈  V  ∧  𝐴  ∈  V )  →  Disj  𝑥  ∈  { ( 𝐴  ∖  ( 𝐴  ∩  𝐵 ) ) ,  ( 𝐴  ∩  𝐵 ) } 𝑥 )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2anc | 
							⊢ ( 𝐴  ∈  𝑉  →  Disj  𝑥  ∈  { ( 𝐴  ∖  ( 𝐴  ∩  𝐵 ) ) ,  ( 𝐴  ∩  𝐵 ) } 𝑥 )  | 
						
						
							| 5 | 
							
								
							 | 
							difin | 
							⊢ ( 𝐴  ∖  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐴  ∖  𝐵 )  | 
						
						
							| 6 | 
							
								5
							 | 
							preq1i | 
							⊢ { ( 𝐴  ∖  ( 𝐴  ∩  𝐵 ) ) ,  ( 𝐴  ∩  𝐵 ) }  =  { ( 𝐴  ∖  𝐵 ) ,  ( 𝐴  ∩  𝐵 ) }  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							⊢ ( 𝐴  ∈  𝑉  →  { ( 𝐴  ∖  ( 𝐴  ∩  𝐵 ) ) ,  ( 𝐴  ∩  𝐵 ) }  =  { ( 𝐴  ∖  𝐵 ) ,  ( 𝐴  ∩  𝐵 ) } )  | 
						
						
							| 8 | 
							
								7
							 | 
							disjeq1d | 
							⊢ ( 𝐴  ∈  𝑉  →  ( Disj  𝑥  ∈  { ( 𝐴  ∖  ( 𝐴  ∩  𝐵 ) ) ,  ( 𝐴  ∩  𝐵 ) } 𝑥  ↔  Disj  𝑥  ∈  { ( 𝐴  ∖  𝐵 ) ,  ( 𝐴  ∩  𝐵 ) } 𝑥 ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							mpbid | 
							⊢ ( 𝐴  ∈  𝑉  →  Disj  𝑥  ∈  { ( 𝐴  ∖  𝐵 ) ,  ( 𝐴  ∩  𝐵 ) } 𝑥 )  |