Metamath Proof Explorer


Theorem disjdmqs

Description: If a relation is disjoint, its domain quotient is equal to the domain quotient of the cosets by it. Lemma for partim2 and petlem via disjdmqseq . (Contributed by Peter Mazsa, 16-Sep-2021)

Ref Expression
Assertion disjdmqs ( Disj 𝑅 → ( dom 𝑅 / 𝑅 ) = ( dom ≀ 𝑅 /𝑅 ) )

Proof

Step Hyp Ref Expression
1 disjdmqsss ( Disj 𝑅 → ( dom 𝑅 / 𝑅 ) ⊆ ( dom ≀ 𝑅 /𝑅 ) )
2 disjdmqscossss ( Disj 𝑅 → ( dom ≀ 𝑅 /𝑅 ) ⊆ ( dom 𝑅 / 𝑅 ) )
3 1 2 eqssd ( Disj 𝑅 → ( dom 𝑅 / 𝑅 ) = ( dom ≀ 𝑅 /𝑅 ) )