Step |
Hyp |
Ref |
Expression |
1 |
|
disjrel |
⊢ ( Disj 𝑅 → Rel 𝑅 ) |
2 |
|
releldmqscoss |
⊢ ( 𝑣 ∈ V → ( Rel 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) ) |
3 |
2
|
elv |
⊢ ( Rel 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) |
4 |
1 3
|
syl |
⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) |
5 |
|
disjlem19 |
⊢ ( 𝑥 ∈ V → ( Disj 𝑅 → ( ( 𝑢 ∈ dom 𝑅 ∧ 𝑥 ∈ [ 𝑢 ] 𝑅 ) → [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) ) ) |
6 |
5
|
elv |
⊢ ( Disj 𝑅 → ( ( 𝑢 ∈ dom 𝑅 ∧ 𝑥 ∈ [ 𝑢 ] 𝑅 ) → [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) ) |
7 |
6
|
ralrimivv |
⊢ ( Disj 𝑅 → ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) |
8 |
|
2r19.29 |
⊢ ( ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) |
9 |
8
|
ex |
⊢ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 → ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) ) |
10 |
7 9
|
syl |
⊢ ( Disj 𝑅 → ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) ) |
11 |
4 10
|
sylbid |
⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) ) |
12 |
|
eqtr3 |
⊢ ( ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑥 ] ≀ 𝑅 ) → [ 𝑢 ] 𝑅 = 𝑣 ) |
13 |
12
|
reximi |
⊢ ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑥 ] ≀ 𝑅 ) → ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ) |
14 |
13
|
reximi |
⊢ ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑥 ] ≀ 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ) |
15 |
11 14
|
syl6 |
⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ) ) |
16 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ↔ ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ [ 𝑢 ] 𝑅 = 𝑣 ) ) |
17 |
|
19.41v |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ [ 𝑢 ] 𝑅 = 𝑣 ) ↔ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ [ 𝑢 ] 𝑅 = 𝑣 ) ) |
18 |
16 17
|
bitri |
⊢ ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ↔ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ [ 𝑢 ] 𝑅 = 𝑣 ) ) |
19 |
18
|
simprbi |
⊢ ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = 𝑣 → [ 𝑢 ] 𝑅 = 𝑣 ) |
20 |
19
|
reximi |
⊢ ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = 𝑣 → ∃ 𝑢 ∈ dom 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ) |
21 |
15 20
|
syl6 |
⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ) ) |
22 |
|
eqcom |
⊢ ( [ 𝑢 ] 𝑅 = 𝑣 ↔ 𝑣 = [ 𝑢 ] 𝑅 ) |
23 |
22
|
rexbii |
⊢ ( ∃ 𝑢 ∈ dom 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ↔ ∃ 𝑢 ∈ dom 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) |
24 |
21 23
|
imbitrdi |
⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) ) |
25 |
24
|
ss2abdv |
⊢ ( Disj 𝑅 → { 𝑣 ∣ 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) } ⊆ { 𝑣 ∣ ∃ 𝑢 ∈ dom 𝑅 𝑣 = [ 𝑢 ] 𝑅 } ) |
26 |
|
abid1 |
⊢ ( dom ≀ 𝑅 / ≀ 𝑅 ) = { 𝑣 ∣ 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) } |
27 |
|
df-qs |
⊢ ( dom 𝑅 / 𝑅 ) = { 𝑣 ∣ ∃ 𝑢 ∈ dom 𝑅 𝑣 = [ 𝑢 ] 𝑅 } |
28 |
25 26 27
|
3sstr4g |
⊢ ( Disj 𝑅 → ( dom ≀ 𝑅 / ≀ 𝑅 ) ⊆ ( dom 𝑅 / 𝑅 ) ) |