Metamath Proof Explorer


Theorem disjdmqsss

Description: Lemma for disjdmqseq via disjdmqs . (Contributed by Peter Mazsa, 16-Sep-2021)

Ref Expression
Assertion disjdmqsss ( Disj 𝑅 → ( dom 𝑅 / 𝑅 ) ⊆ ( dom ≀ 𝑅 /𝑅 ) )

Proof

Step Hyp Ref Expression
1 disjrel ( Disj 𝑅 → Rel 𝑅 )
2 releldmqs ( 𝑣 ∈ V → ( Rel 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) ) )
3 2 elv ( Rel 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) )
4 1 3 syl ( Disj 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) )
5 disjlem19 ( 𝑥 ∈ V → ( Disj 𝑅 → ( ( 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 ) → [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) ) )
6 5 elv ( Disj 𝑅 → ( ( 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 ) → [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) )
7 6 ralrimivv ( Disj 𝑅 → ∀ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 )
8 2r19.29 ( ( ∀ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅𝑣 = [ 𝑢 ] 𝑅 ) )
9 8 ex ( ∀ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 → ( ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 → ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅𝑣 = [ 𝑢 ] 𝑅 ) ) )
10 7 9 syl ( Disj 𝑅 → ( ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 → ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅𝑣 = [ 𝑢 ] 𝑅 ) ) )
11 4 10 sylbid ( Disj 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅𝑣 = [ 𝑢 ] 𝑅 ) ) )
12 eqtr ( ( 𝑣 = [ 𝑢 ] 𝑅 ∧ [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) → 𝑣 = [ 𝑥 ] ≀ 𝑅 )
13 12 ancoms ( ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅𝑣 = [ 𝑢 ] 𝑅 ) → 𝑣 = [ 𝑥 ] ≀ 𝑅 )
14 13 reximi ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅𝑣 = [ 𝑢 ] 𝑅 ) → ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 )
15 14 reximi ( ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅𝑣 = [ 𝑢 ] 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 )
16 11 15 syl6 ( Disj 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) )
17 releldmqscoss ( 𝑣 ∈ V → ( Rel 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 /𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) )
18 17 elv ( Rel 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 /𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) )
19 1 18 syl ( Disj 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 /𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) )
20 16 19 sylibrd ( Disj 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) → 𝑣 ∈ ( dom ≀ 𝑅 /𝑅 ) ) )
21 20 ssrdv ( Disj 𝑅 → ( dom 𝑅 / 𝑅 ) ⊆ ( dom ≀ 𝑅 /𝑅 ) )