Step |
Hyp |
Ref |
Expression |
1 |
|
disjrel |
⊢ ( Disj 𝑅 → Rel 𝑅 ) |
2 |
|
releldmqs |
⊢ ( 𝑣 ∈ V → ( Rel 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) ) ) |
3 |
2
|
elv |
⊢ ( Rel 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) ) |
4 |
1 3
|
syl |
⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) ) |
5 |
|
disjlem19 |
⊢ ( 𝑥 ∈ V → ( Disj 𝑅 → ( ( 𝑢 ∈ dom 𝑅 ∧ 𝑥 ∈ [ 𝑢 ] 𝑅 ) → [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) ) ) |
6 |
5
|
elv |
⊢ ( Disj 𝑅 → ( ( 𝑢 ∈ dom 𝑅 ∧ 𝑥 ∈ [ 𝑢 ] 𝑅 ) → [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) ) |
7 |
6
|
ralrimivv |
⊢ ( Disj 𝑅 → ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) |
8 |
|
2r19.29 |
⊢ ( ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑢 ] 𝑅 ) ) |
9 |
8
|
ex |
⊢ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 → ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑢 ] 𝑅 ) ) ) |
10 |
7 9
|
syl |
⊢ ( Disj 𝑅 → ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑢 ] 𝑅 → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑢 ] 𝑅 ) ) ) |
11 |
4 10
|
sylbid |
⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑢 ] 𝑅 ) ) ) |
12 |
|
eqtr |
⊢ ( ( 𝑣 = [ 𝑢 ] 𝑅 ∧ [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) → 𝑣 = [ 𝑥 ] ≀ 𝑅 ) |
13 |
12
|
ancoms |
⊢ ( ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑢 ] 𝑅 ) → 𝑣 = [ 𝑥 ] ≀ 𝑅 ) |
14 |
13
|
reximi |
⊢ ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑢 ] 𝑅 ) → ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) |
15 |
14
|
reximi |
⊢ ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑢 ] 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) |
16 |
11 15
|
syl6 |
⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) |
17 |
|
releldmqscoss |
⊢ ( 𝑣 ∈ V → ( Rel 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) ) |
18 |
17
|
elv |
⊢ ( Rel 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) |
19 |
1 18
|
syl |
⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) |
20 |
16 19
|
sylibrd |
⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom 𝑅 / 𝑅 ) → 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ) ) |
21 |
20
|
ssrdv |
⊢ ( Disj 𝑅 → ( dom 𝑅 / 𝑅 ) ⊆ ( dom ≀ 𝑅 / ≀ 𝑅 ) ) |