Metamath Proof Explorer


Theorem disjecxrn

Description: Two ways of saying that ( R |X. S ) -cosets are disjoint. (Contributed by Peter Mazsa, 19-Jun-2020) (Revised by Peter Mazsa, 21-Aug-2023)

Ref Expression
Assertion disjecxrn ( ( 𝐴𝑉𝐵𝑊 ) → ( ( [ 𝐴 ] ( 𝑅𝑆 ) ∩ [ 𝐵 ] ( 𝑅𝑆 ) ) = ∅ ↔ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) = ∅ ) ) )

Proof

Step Hyp Ref Expression
1 ecxrn ( 𝐴𝑉 → [ 𝐴 ] ( 𝑅𝑆 ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝐴 𝑅 𝑦𝐴 𝑆 𝑧 ) } )
2 ecxrn ( 𝐵𝑊 → [ 𝐵 ] ( 𝑅𝑆 ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝐵 𝑅 𝑦𝐵 𝑆 𝑧 ) } )
3 1 2 ineqan12d ( ( 𝐴𝑉𝐵𝑊 ) → ( [ 𝐴 ] ( 𝑅𝑆 ) ∩ [ 𝐵 ] ( 𝑅𝑆 ) ) = ( { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝐴 𝑅 𝑦𝐴 𝑆 𝑧 ) } ∩ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝐵 𝑅 𝑦𝐵 𝑆 𝑧 ) } ) )
4 inopab ( { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝐴 𝑅 𝑦𝐴 𝑆 𝑧 ) } ∩ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝐵 𝑅 𝑦𝐵 𝑆 𝑧 ) } ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝐴 𝑅 𝑦𝐴 𝑆 𝑧 ) ∧ ( 𝐵 𝑅 𝑦𝐵 𝑆 𝑧 ) ) }
5 3 4 eqtrdi ( ( 𝐴𝑉𝐵𝑊 ) → ( [ 𝐴 ] ( 𝑅𝑆 ) ∩ [ 𝐵 ] ( 𝑅𝑆 ) ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝐴 𝑅 𝑦𝐴 𝑆 𝑧 ) ∧ ( 𝐵 𝑅 𝑦𝐵 𝑆 𝑧 ) ) } )
6 an4 ( ( ( 𝐴 𝑅 𝑦𝐴 𝑆 𝑧 ) ∧ ( 𝐵 𝑅 𝑦𝐵 𝑆 𝑧 ) ) ↔ ( ( 𝐴 𝑅 𝑦𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧𝐵 𝑆 𝑧 ) ) )
7 6 opabbii { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝐴 𝑅 𝑦𝐴 𝑆 𝑧 ) ∧ ( 𝐵 𝑅 𝑦𝐵 𝑆 𝑧 ) ) } = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝐴 𝑅 𝑦𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧𝐵 𝑆 𝑧 ) ) }
8 5 7 eqtrdi ( ( 𝐴𝑉𝐵𝑊 ) → ( [ 𝐴 ] ( 𝑅𝑆 ) ∩ [ 𝐵 ] ( 𝑅𝑆 ) ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝐴 𝑅 𝑦𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧𝐵 𝑆 𝑧 ) ) } )
9 8 neeq1d ( ( 𝐴𝑉𝐵𝑊 ) → ( ( [ 𝐴 ] ( 𝑅𝑆 ) ∩ [ 𝐵 ] ( 𝑅𝑆 ) ) ≠ ∅ ↔ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝐴 𝑅 𝑦𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧𝐵 𝑆 𝑧 ) ) } ≠ ∅ ) )
10 opabn0 ( { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( ( 𝐴 𝑅 𝑦𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧𝐵 𝑆 𝑧 ) ) } ≠ ∅ ↔ ∃ 𝑦𝑧 ( ( 𝐴 𝑅 𝑦𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧𝐵 𝑆 𝑧 ) ) )
11 9 10 bitrdi ( ( 𝐴𝑉𝐵𝑊 ) → ( ( [ 𝐴 ] ( 𝑅𝑆 ) ∩ [ 𝐵 ] ( 𝑅𝑆 ) ) ≠ ∅ ↔ ∃ 𝑦𝑧 ( ( 𝐴 𝑅 𝑦𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧𝐵 𝑆 𝑧 ) ) ) )
12 exdistrv ( ∃ 𝑦𝑧 ( ( 𝐴 𝑅 𝑦𝐵 𝑅 𝑦 ) ∧ ( 𝐴 𝑆 𝑧𝐵 𝑆 𝑧 ) ) ↔ ( ∃ 𝑦 ( 𝐴 𝑅 𝑦𝐵 𝑅 𝑦 ) ∧ ∃ 𝑧 ( 𝐴 𝑆 𝑧𝐵 𝑆 𝑧 ) ) )
13 11 12 bitrdi ( ( 𝐴𝑉𝐵𝑊 ) → ( ( [ 𝐴 ] ( 𝑅𝑆 ) ∩ [ 𝐵 ] ( 𝑅𝑆 ) ) ≠ ∅ ↔ ( ∃ 𝑦 ( 𝐴 𝑅 𝑦𝐵 𝑅 𝑦 ) ∧ ∃ 𝑧 ( 𝐴 𝑆 𝑧𝐵 𝑆 𝑧 ) ) ) )
14 ecinn0 ( ( 𝐴𝑉𝐵𝑊 ) → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ↔ ∃ 𝑦 ( 𝐴 𝑅 𝑦𝐵 𝑅 𝑦 ) ) )
15 ecinn0 ( ( 𝐴𝑉𝐵𝑊 ) → ( ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) ≠ ∅ ↔ ∃ 𝑧 ( 𝐴 𝑆 𝑧𝐵 𝑆 𝑧 ) ) )
16 14 15 anbi12d ( ( 𝐴𝑉𝐵𝑊 ) → ( ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ∧ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) ≠ ∅ ) ↔ ( ∃ 𝑦 ( 𝐴 𝑅 𝑦𝐵 𝑅 𝑦 ) ∧ ∃ 𝑧 ( 𝐴 𝑆 𝑧𝐵 𝑆 𝑧 ) ) ) )
17 13 16 bitr4d ( ( 𝐴𝑉𝐵𝑊 ) → ( ( [ 𝐴 ] ( 𝑅𝑆 ) ∩ [ 𝐵 ] ( 𝑅𝑆 ) ) ≠ ∅ ↔ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ∧ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) ≠ ∅ ) ) )
18 neanior ( ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) ≠ ∅ ∧ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) ≠ ∅ ) ↔ ¬ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) = ∅ ) )
19 17 18 bitrdi ( ( 𝐴𝑉𝐵𝑊 ) → ( ( [ 𝐴 ] ( 𝑅𝑆 ) ∩ [ 𝐵 ] ( 𝑅𝑆 ) ) ≠ ∅ ↔ ¬ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) = ∅ ) ) )
20 19 necon4abid ( ( 𝐴𝑉𝐵𝑊 ) → ( ( [ 𝐴 ] ( 𝑅𝑆 ) ∩ [ 𝐵 ] ( 𝑅𝑆 ) ) = ∅ ↔ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ∨ ( [ 𝐴 ] 𝑆 ∩ [ 𝐵 ] 𝑆 ) = ∅ ) ) )