Metamath Proof Explorer


Theorem disjel

Description: A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015)

Ref Expression
Assertion disjel ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐶𝐴 ) → ¬ 𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 disj3 ( ( 𝐴𝐵 ) = ∅ ↔ 𝐴 = ( 𝐴𝐵 ) )
2 eleq2 ( 𝐴 = ( 𝐴𝐵 ) → ( 𝐶𝐴𝐶 ∈ ( 𝐴𝐵 ) ) )
3 eldifn ( 𝐶 ∈ ( 𝐴𝐵 ) → ¬ 𝐶𝐵 )
4 2 3 syl6bi ( 𝐴 = ( 𝐴𝐵 ) → ( 𝐶𝐴 → ¬ 𝐶𝐵 ) )
5 1 4 sylbi ( ( 𝐴𝐵 ) = ∅ → ( 𝐶𝐴 → ¬ 𝐶𝐵 ) )
6 5 imp ( ( ( 𝐴𝐵 ) = ∅ ∧ 𝐶𝐴 ) → ¬ 𝐶𝐵 )