Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ 𝑊 ) |
2 |
|
snex |
⊢ { 𝒫 ∪ ran 𝐴 } ∈ V |
3 |
|
xpexg |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ { 𝒫 ∪ ran 𝐴 } ∈ V ) → ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ∈ V ) |
4 |
1 2 3
|
sylancl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ∈ V ) |
5 |
|
disjen |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∩ ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ) = ∅ ∧ ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ≈ 𝐵 ) ) |
6 |
|
ineq2 |
⊢ ( 𝑥 = ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) → ( 𝐴 ∩ 𝑥 ) = ( 𝐴 ∩ ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑥 = ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) → ( ( 𝐴 ∩ 𝑥 ) = ∅ ↔ ( 𝐴 ∩ ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ) = ∅ ) ) |
8 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) → ( 𝑥 ≈ 𝐵 ↔ ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ≈ 𝐵 ) ) |
9 |
7 8
|
anbi12d |
⊢ ( 𝑥 = ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) → ( ( ( 𝐴 ∩ 𝑥 ) = ∅ ∧ 𝑥 ≈ 𝐵 ) ↔ ( ( 𝐴 ∩ ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ) = ∅ ∧ ( 𝐵 × { 𝒫 ∪ ran 𝐴 } ) ≈ 𝐵 ) ) ) |
10 |
4 5 9
|
spcedv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∃ 𝑥 ( ( 𝐴 ∩ 𝑥 ) = ∅ ∧ 𝑥 ≈ 𝐵 ) ) |