Step |
Hyp |
Ref |
Expression |
1 |
|
ineq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐵 ) ) |
2 |
|
inidm |
⊢ ( 𝐵 ∩ 𝐵 ) = 𝐵 |
3 |
1 2
|
eqtrdi |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
4 |
3
|
eqeq1d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ 𝐵 = ∅ ) ) |
5 |
|
eqtr |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 = ∅ ) → 𝐴 = ∅ ) |
6 |
|
simpr |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) |
7 |
5 6
|
jca |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 = ∅ ) → ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) |
8 |
7
|
ex |
⊢ ( 𝐴 = 𝐵 → ( 𝐵 = ∅ → ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
9 |
4 8
|
sylbid |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
10 |
9
|
com12 |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐴 = 𝐵 → ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
11 |
|
eqtr3 |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → 𝐴 = 𝐵 ) |
12 |
10 11
|
impbid1 |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( 𝐴 = 𝐵 ↔ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |