Metamath Proof Explorer


Theorem disjeq1

Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion disjeq1 ( 𝐴 = 𝐵 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶 ) )

Proof

Step Hyp Ref Expression
1 eqimss2 ( 𝐴 = 𝐵𝐵𝐴 )
2 disjss1 ( 𝐵𝐴 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶 ) )
3 1 2 syl ( 𝐴 = 𝐵 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶 ) )
4 eqimss ( 𝐴 = 𝐵𝐴𝐵 )
5 disjss1 ( 𝐴𝐵 → ( Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶 ) )
6 4 5 syl ( 𝐴 = 𝐵 → ( Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶 ) )
7 3 6 impbid ( 𝐴 = 𝐵 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶 ) )