Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | disjeq1 | ⊢ ( 𝐴 = 𝐵 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 | ⊢ ( 𝐴 = 𝐵 → 𝐵 ⊆ 𝐴 ) | |
2 | disjss1 | ⊢ ( 𝐵 ⊆ 𝐴 → ( Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝐴 = 𝐵 → ( Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
4 | eqimss | ⊢ ( 𝐴 = 𝐵 → 𝐴 ⊆ 𝐵 ) | |
5 | disjss1 | ⊢ ( 𝐴 ⊆ 𝐵 → ( Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) | |
6 | 4 5 | syl | ⊢ ( 𝐴 = 𝐵 → ( Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) |
7 | 3 6 | impbid | ⊢ ( 𝐴 = 𝐵 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶 ) ) |