Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | disjeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
disjeq12d.1 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
Assertion | disjeq12d | ⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | disjeq12d.1 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
3 | 1 | disjeq1d | ⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
4 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 = 𝐷 ) |
5 | 4 | disjeq2dv | ⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐵 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷 ) ) |
6 | 3 5 | bitrd | ⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷 ) ) |