Metamath Proof Explorer


Theorem disjeq12d

Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypotheses disjeq1d.1 ( 𝜑𝐴 = 𝐵 )
disjeq12d.1 ( 𝜑𝐶 = 𝐷 )
Assertion disjeq12d ( 𝜑 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐷 ) )

Proof

Step Hyp Ref Expression
1 disjeq1d.1 ( 𝜑𝐴 = 𝐵 )
2 disjeq12d.1 ( 𝜑𝐶 = 𝐷 )
3 1 disjeq1d ( 𝜑 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶 ) )
4 2 adantr ( ( 𝜑𝑥𝐵 ) → 𝐶 = 𝐷 )
5 4 disjeq2dv ( 𝜑 → ( Disj 𝑥𝐵 𝐶Disj 𝑥𝐵 𝐷 ) )
6 3 5 bitrd ( 𝜑 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐷 ) )