Metamath Proof Explorer
Description: Equality theorem for disjoint collection. (Contributed by Mario
Carneiro, 14-Nov-2016)
|
|
Ref |
Expression |
|
Hypothesis |
disjeq1d.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
Assertion |
disjeq1d |
⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
disjeq1d.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
disjeq1 |
⊢ ( 𝐴 = 𝐵 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶 ) ) |