Metamath Proof Explorer


Theorem disjeq1d

Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypothesis disjeq1d.1 ( 𝜑𝐴 = 𝐵 )
Assertion disjeq1d ( 𝜑 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶 ) )

Proof

Step Hyp Ref Expression
1 disjeq1d.1 ( 𝜑𝐴 = 𝐵 )
2 disjeq1 ( 𝐴 = 𝐵 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶 ) )
3 1 2 syl ( 𝜑 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶 ) )