Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | disjeq2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 | ⊢ ( 𝐵 = 𝐶 → 𝐶 ⊆ 𝐵 ) | |
2 | 1 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ) |
3 | disjss2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → ( Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) | |
4 | 2 3 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ( Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) |
5 | eqimss | ⊢ ( 𝐵 = 𝐶 → 𝐵 ⊆ 𝐶 ) | |
6 | 5 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
7 | disjss2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵 ) ) | |
8 | 6 7 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ( Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵 ) ) |
9 | 4 8 | impbid | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶 ) ) |