Metamath Proof Explorer


Theorem disjeq2

Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion disjeq2 ( ∀ 𝑥𝐴 𝐵 = 𝐶 → ( Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶 ) )

Proof

Step Hyp Ref Expression
1 eqimss2 ( 𝐵 = 𝐶𝐶𝐵 )
2 1 ralimi ( ∀ 𝑥𝐴 𝐵 = 𝐶 → ∀ 𝑥𝐴 𝐶𝐵 )
3 disjss2 ( ∀ 𝑥𝐴 𝐶𝐵 → ( Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶 ) )
4 2 3 syl ( ∀ 𝑥𝐴 𝐵 = 𝐶 → ( Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶 ) )
5 eqimss ( 𝐵 = 𝐶𝐵𝐶 )
6 5 ralimi ( ∀ 𝑥𝐴 𝐵 = 𝐶 → ∀ 𝑥𝐴 𝐵𝐶 )
7 disjss2 ( ∀ 𝑥𝐴 𝐵𝐶 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵 ) )
8 6 7 syl ( ∀ 𝑥𝐴 𝐵 = 𝐶 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵 ) )
9 4 8 impbid ( ∀ 𝑥𝐴 𝐵 = 𝐶 → ( Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶 ) )