Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjeq2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqimss2 | ⊢ ( 𝐵 = 𝐶 → 𝐶 ⊆ 𝐵 ) | |
| 2 | 1 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ) | 
| 3 | disjss2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → ( Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ( Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) | 
| 5 | eqimss | ⊢ ( 𝐵 = 𝐶 → 𝐵 ⊆ 𝐶 ) | |
| 6 | 5 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) | 
| 7 | disjss2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ( Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵 ) ) | 
| 9 | 4 8 | impbid | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶 ) ) |