Step |
Hyp |
Ref |
Expression |
1 |
|
orcom |
⊢ ( ( 𝐴 = 𝐵 ∨ ¬ ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ↔ ( ¬ ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
2 |
|
df-in |
⊢ ( 𝐴 ∩ 𝐵 ) = { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) } |
3 |
2
|
neeq1i |
⊢ ( ( 𝐴 ∩ 𝐵 ) ≠ ∅ ↔ { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) } ≠ ∅ ) |
4 |
|
abn0 |
⊢ ( { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) } ≠ ∅ ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) |
5 |
3 4
|
bitr2i |
⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝐴 ∩ 𝐵 ) ≠ ∅ ) |
6 |
5
|
necon2bbii |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ¬ ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) |
7 |
6
|
orbi2i |
⊢ ( ( 𝐴 = 𝐵 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ↔ ( 𝐴 = 𝐵 ∨ ¬ ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ) ) |
8 |
|
imor |
⊢ ( ( ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝐴 = 𝐵 ) ↔ ( ¬ ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
9 |
1 7 8
|
3bitr4ri |
⊢ ( ( ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 𝐴 = 𝐵 ) ↔ ( 𝐴 = 𝐵 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |