| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							disjexc.1 | 
							⊢ ( 𝑥  =  𝑦  →  𝐴  =  𝐵 )  | 
						
						
							| 2 | 
							
								1
							 | 
							imim2i | 
							⊢ ( ( ∃ 𝑧 ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  𝑥  =  𝑦 )  →  ( ∃ 𝑧 ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  𝐴  =  𝐵 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							orcom | 
							⊢ ( ( 𝐴  =  𝐵  ∨  ¬  ∃ 𝑧 ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  ↔  ( ¬  ∃ 𝑧 ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  ∨  𝐴  =  𝐵 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							df-in | 
							⊢ ( 𝐴  ∩  𝐵 )  =  { 𝑧  ∣  ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) }  | 
						
						
							| 5 | 
							
								4
							 | 
							neeq1i | 
							⊢ ( ( 𝐴  ∩  𝐵 )  ≠  ∅  ↔  { 𝑧  ∣  ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) }  ≠  ∅ )  | 
						
						
							| 6 | 
							
								
							 | 
							abn0 | 
							⊢ ( { 𝑧  ∣  ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) }  ≠  ∅  ↔  ∃ 𝑧 ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							bitr2i | 
							⊢ ( ∃ 𝑧 ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  ↔  ( 𝐴  ∩  𝐵 )  ≠  ∅ )  | 
						
						
							| 8 | 
							
								7
							 | 
							necon2bbii | 
							⊢ ( ( 𝐴  ∩  𝐵 )  =  ∅  ↔  ¬  ∃ 𝑧 ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							orbi2i | 
							⊢ ( ( 𝐴  =  𝐵  ∨  ( 𝐴  ∩  𝐵 )  =  ∅ )  ↔  ( 𝐴  =  𝐵  ∨  ¬  ∃ 𝑧 ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝐵 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							imor | 
							⊢ ( ( ∃ 𝑧 ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  𝐴  =  𝐵 )  ↔  ( ¬  ∃ 𝑧 ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  ∨  𝐴  =  𝐵 ) )  | 
						
						
							| 11 | 
							
								3 9 10
							 | 
							3bitr4i | 
							⊢ ( ( 𝐴  =  𝐵  ∨  ( 𝐴  ∩  𝐵 )  =  ∅ )  ↔  ( ∃ 𝑧 ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  𝐴  =  𝐵 ) )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							sylibr | 
							⊢ ( ( ∃ 𝑧 ( 𝑧  ∈  𝐴  ∧  𝑧  ∈  𝐵 )  →  𝑥  =  𝑦 )  →  ( 𝐴  =  𝐵  ∨  ( 𝐴  ∩  𝐵 )  =  ∅ ) )  |