Step |
Hyp |
Ref |
Expression |
1 |
|
disji.1 |
⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) |
2 |
|
disji.2 |
⊢ ( 𝑥 = 𝑌 → 𝐵 = 𝐷 ) |
3 |
|
inelcm |
⊢ ( ( 𝑍 ∈ 𝐶 ∧ 𝑍 ∈ 𝐷 ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) |
4 |
1 2
|
disji2 |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
5 |
4
|
3expia |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( 𝑋 ≠ 𝑌 → ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
6 |
5
|
necon1d |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝐶 ∩ 𝐷 ) ≠ ∅ → 𝑋 = 𝑌 ) ) |
7 |
6
|
3impia |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) → 𝑋 = 𝑌 ) |
8 |
3 7
|
syl3an3 |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ ( 𝑍 ∈ 𝐶 ∧ 𝑍 ∈ 𝐷 ) ) → 𝑋 = 𝑌 ) |