Metamath Proof Explorer


Theorem disji

Description: Property of a disjoint collection: if B ( X ) = C and B ( Y ) = D have a common element Z , then X = Y . (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypotheses disji.1 ( 𝑥 = 𝑋𝐵 = 𝐶 )
disji.2 ( 𝑥 = 𝑌𝐵 = 𝐷 )
Assertion disji ( ( Disj 𝑥𝐴 𝐵 ∧ ( 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑍𝐶𝑍𝐷 ) ) → 𝑋 = 𝑌 )

Proof

Step Hyp Ref Expression
1 disji.1 ( 𝑥 = 𝑋𝐵 = 𝐶 )
2 disji.2 ( 𝑥 = 𝑌𝐵 = 𝐷 )
3 inelcm ( ( 𝑍𝐶𝑍𝐷 ) → ( 𝐶𝐷 ) ≠ ∅ )
4 1 2 disji2 ( ( Disj 𝑥𝐴 𝐵 ∧ ( 𝑋𝐴𝑌𝐴 ) ∧ 𝑋𝑌 ) → ( 𝐶𝐷 ) = ∅ )
5 4 3expia ( ( Disj 𝑥𝐴 𝐵 ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( 𝑋𝑌 → ( 𝐶𝐷 ) = ∅ ) )
6 5 necon1d ( ( Disj 𝑥𝐴 𝐵 ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( 𝐶𝐷 ) ≠ ∅ → 𝑋 = 𝑌 ) )
7 6 3impia ( ( Disj 𝑥𝐴 𝐵 ∧ ( 𝑋𝐴𝑌𝐴 ) ∧ ( 𝐶𝐷 ) ≠ ∅ ) → 𝑋 = 𝑌 )
8 3 7 syl3an3 ( ( Disj 𝑥𝐴 𝐵 ∧ ( 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑍𝐶𝑍𝐷 ) ) → 𝑋 = 𝑌 )