| Step | Hyp | Ref | Expression | 
						
							| 1 |  | disji.1 | ⊢ ( 𝑥  =  𝑋  →  𝐵  =  𝐶 ) | 
						
							| 2 |  | disji.2 | ⊢ ( 𝑥  =  𝑌  →  𝐵  =  𝐷 ) | 
						
							| 3 |  | df-ne | ⊢ ( 𝑋  ≠  𝑌  ↔  ¬  𝑋  =  𝑌 ) | 
						
							| 4 |  | disjors | ⊢ ( Disj  𝑥  ∈  𝐴 𝐵  ↔  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( 𝑦  =  𝑧  ∨  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) | 
						
							| 5 |  | eqeq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  =  𝑧  ↔  𝑋  =  𝑧 ) ) | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑥 𝑋 | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑥 𝐶 | 
						
							| 8 | 6 7 1 | csbhypf | ⊢ ( 𝑦  =  𝑋  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  =  𝐶 ) | 
						
							| 9 | 8 | ineq1d | ⊢ ( 𝑦  =  𝑋  →  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ( 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑦  =  𝑋  →  ( ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) | 
						
							| 11 | 5 10 | orbi12d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝑦  =  𝑧  ∨  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( 𝑋  =  𝑧  ∨  ( 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) ) | 
						
							| 12 |  | eqeq2 | ⊢ ( 𝑧  =  𝑌  →  ( 𝑋  =  𝑧  ↔  𝑋  =  𝑌 ) ) | 
						
							| 13 |  | nfcv | ⊢ Ⅎ 𝑥 𝑌 | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 15 | 13 14 2 | csbhypf | ⊢ ( 𝑧  =  𝑌  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  =  𝐷 ) | 
						
							| 16 | 15 | ineq2d | ⊢ ( 𝑧  =  𝑌  →  ( 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ( 𝐶  ∩  𝐷 ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( 𝑧  =  𝑌  →  ( ( 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( 𝐶  ∩  𝐷 )  =  ∅ ) ) | 
						
							| 18 | 12 17 | orbi12d | ⊢ ( 𝑧  =  𝑌  →  ( ( 𝑋  =  𝑧  ∨  ( 𝐶  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( 𝑋  =  𝑌  ∨  ( 𝐶  ∩  𝐷 )  =  ∅ ) ) ) | 
						
							| 19 | 11 18 | rspc2v | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  →  ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( 𝑦  =  𝑧  ∨  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅ )  →  ( 𝑋  =  𝑌  ∨  ( 𝐶  ∩  𝐷 )  =  ∅ ) ) ) | 
						
							| 20 | 4 19 | biimtrid | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  →  ( Disj  𝑥  ∈  𝐴 𝐵  →  ( 𝑋  =  𝑌  ∨  ( 𝐶  ∩  𝐷 )  =  ∅ ) ) ) | 
						
							| 21 | 20 | impcom | ⊢ ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 ) )  →  ( 𝑋  =  𝑌  ∨  ( 𝐶  ∩  𝐷 )  =  ∅ ) ) | 
						
							| 22 | 21 | ord | ⊢ ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 ) )  →  ( ¬  𝑋  =  𝑌  →  ( 𝐶  ∩  𝐷 )  =  ∅ ) ) | 
						
							| 23 | 3 22 | biimtrid | ⊢ ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 ) )  →  ( 𝑋  ≠  𝑌  →  ( 𝐶  ∩  𝐷 )  =  ∅ ) ) | 
						
							| 24 | 23 | 3impia | ⊢ ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  ∧  𝑋  ≠  𝑌 )  →  ( 𝐶  ∩  𝐷 )  =  ∅ ) |