| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							disjif.1 | 
							⊢ Ⅎ 𝑥 𝐶  | 
						
						
							| 2 | 
							
								
							 | 
							disjif.2 | 
							⊢ ( 𝑥  =  𝑌  →  𝐵  =  𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							df-ne | 
							⊢ ( 𝑥  ≠  𝑌  ↔  ¬  𝑥  =  𝑌 )  | 
						
						
							| 4 | 
							
								
							 | 
							disjors | 
							⊢ ( Disj  𝑥  ∈  𝐴 𝐵  ↔  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( 𝑦  =  𝑧  ∨  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 5 | 
							
								
							 | 
							equequ1 | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  𝑧  ↔  𝑥  =  𝑧 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							csbeq1 | 
							⊢ ( 𝑦  =  𝑥  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  =  ⦋ 𝑥  /  𝑥 ⦌ 𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							csbid | 
							⊢ ⦋ 𝑥  /  𝑥 ⦌ 𝐵  =  𝐵  | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqtrdi | 
							⊢ ( 𝑦  =  𝑥  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  =  𝐵 )  | 
						
						
							| 9 | 
							
								8
							 | 
							ineq1d | 
							⊢ ( 𝑦  =  𝑥  →  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ( 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqeq1d | 
							⊢ ( 𝑦  =  𝑥  →  ( ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅ ) )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							orbi12d | 
							⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦  =  𝑧  ∨  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( 𝑥  =  𝑧  ∨  ( 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅ ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( 𝑧  =  𝑌  →  ( 𝑥  =  𝑧  ↔  𝑥  =  𝑌 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 𝑌  | 
						
						
							| 14 | 
							
								13 1 2
							 | 
							csbhypf | 
							⊢ ( 𝑧  =  𝑌  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  =  𝐶 )  | 
						
						
							| 15 | 
							
								14
							 | 
							ineq2d | 
							⊢ ( 𝑧  =  𝑌  →  ( 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ( 𝐵  ∩  𝐶 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							eqeq1d | 
							⊢ ( 𝑧  =  𝑌  →  ( ( 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅  ↔  ( 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 17 | 
							
								12 16
							 | 
							orbi12d | 
							⊢ ( 𝑧  =  𝑌  →  ( ( 𝑥  =  𝑧  ∨  ( 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅ )  ↔  ( 𝑥  =  𝑌  ∨  ( 𝐵  ∩  𝐶 )  =  ∅ ) ) )  | 
						
						
							| 18 | 
							
								11 17
							 | 
							rspc2v | 
							⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  →  ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( 𝑦  =  𝑧  ∨  ( ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ∩  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 )  =  ∅ )  →  ( 𝑥  =  𝑌  ∨  ( 𝐵  ∩  𝐶 )  =  ∅ ) ) )  | 
						
						
							| 19 | 
							
								4 18
							 | 
							biimtrid | 
							⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  →  ( Disj  𝑥  ∈  𝐴 𝐵  →  ( 𝑥  =  𝑌  ∨  ( 𝐵  ∩  𝐶 )  =  ∅ ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							impcom | 
							⊢ ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑌  ∈  𝐴 ) )  →  ( 𝑥  =  𝑌  ∨  ( 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							ord | 
							⊢ ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑌  ∈  𝐴 ) )  →  ( ¬  𝑥  =  𝑌  →  ( 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 22 | 
							
								3 21
							 | 
							biimtrid | 
							⊢ ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑌  ∈  𝐴 ) )  →  ( 𝑥  ≠  𝑌  →  ( 𝐵  ∩  𝐶 )  =  ∅ ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							3impia | 
							⊢ ( ( Disj  𝑥  ∈  𝐴 𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  ∧  𝑥  ≠  𝑌 )  →  ( 𝐵  ∩  𝐶 )  =  ∅ )  |